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CHAPTER 5. OPTIMIZATION 

 

This chapter is based on Chapter 4 of the book by Miranda and Fackler. 

 

We are given a real-valued function f defined on      and asked to find an      

such that  (  )   ( )  for all    . We denote this problem 

   
   

 ( ) 

and call f the objective function, X the feasible set and x*, if it exists, a maximum. In 

this chapter we will assume that the feasible set plays no role in the optimisation 

problem, or that     . Miranda and Fackler extends the analysis to the case when 

     .  

 

A point      is a local maximum of f if there is a neighbourhood N of x* such that 

 (  )   ( )  for all    . The point      is a strict local maximum if, additionally,  

 (  )   ( )  for all      in N. 

 

If     is a local maximum of f and f is twice continuously differentiable, then f’(x*)=0 

and f”(x*) is negative semi-definite. Conversely, if f’(x*)=0 and f”(x) is negative 

semi-definite in a neighbourhood N of x*, then x* is a local maximum. If additionally 

f”(x) is negative definite, then x* is a strict local maximum. If f is concave on    and 

x* is a local maximum of f, then x* is a global maximum of f on   . 

 

To solve a minimization problem, one simply maximizes the negative of the objective 

function. The result of previous paragraph hold for minimization, provided one 

change concavity of f to convexity and negative (semi) definiteness of f” to positive 

(semi) definiteness. 

 

1. The golden search method 

 

We saw in chapter 3 the bisection method, which is the simplest and most robust 

method for computing the root of a continuous real-valued function on a bounded 

interval of the real line. The golden search method shares these qualities for uni-

dimensional optimisation problems. 
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We want to find a local maximum of a continuous univariate function f(x) on the 

interval [a, b]. We pick any two numbers in the interval,    and   , with      . We 

evaluate the function at these two points and replace the original interval with [    ] 

if  (  )   (  ) , or with [    ]  if  (  )   (  ) . A local maximum must be 

contained in the new interval because the endpoints of the new interval have smaller 

function values than a point on the interval’s interior (or the local maximum is at one 

of the original endpoints). We can repeat this procedure producing a sequence of 

progressively smaller intervals that are guaranteed to contain a local maximum, until 

the length of the interval is shorter than some desired tolerance level. 

 

How to pick the interior evaluation points? First, we want the length of the new 

interval to be independent of whether the upper or lower bound is replaced, which 

means          . Second, on successive iteration, one should be able to reuse 

an interior point from the previous iteration so that only one new function evaluation 

is performed per iteration. That means that if we have retained [    ]  at the first 

iteration, the two points, which will be picked in this interval in the second iteration 

will be    and      . If we have retained [    ] at the first iteration the two points, 

which will be picked in the second iteration will be       and   . We can prove 

that these conditions are satisfied by selecting 

       (   ) 

where    
  √ 

 
        and    

√   

 
       .  

 

   is the golden ratio conjugate   
 

 
    , where   

√   

 
 is the golden ratio. 

The golden ratio is a mysterious number well known by painters and architects. Two 

quantities a and b are said to be in the golden ratio if  

   

 
 

 

 
.  

You can find much more on Wikipedia. 

 

We can write in a working directory, which I called Chapter 5 the script M-file 

golden.m 

alpha1 = (3-sqrt(5))/2; 
alpha2 = (sqrt(5)-1)/2; 
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x1 = a+alpha1*(b-a);f1 = f(x1); 
x2 = a+alpha2*(b-a);f2 = f(x2); 
d = alpha1*alpha2*(b-a); 
while d>tol 
  d = d*alpha2; 
  if f2<f1 % x2 is new upper bound 
    x2 = x1; x1 = x1-d;  
    f2 = f1; f1 = f(x1); 
  else     % x1 is new lower bound 
    x1 = x2; x2 = x2+d;  
    f1 = f2; f2 = f(x2); 
  end 
end 
if f2>f1 
    x1 = x2;  
else 
    x = x1; end 

 

We will use this program to compute the maximum of the function  ( )      (  ) 

on the interval [0, 3]. So, we write a function M-file f.m 

 

function y=f(x); 
y=x*cos(x^2); 

 

Finally, we type in the command window 

>> tol=1e-09; 

>> a=0;b=3; 

>> golden;x 

 

We get 

x = 

    0.8083 

 

There exist extensions of this method to the optimisation of multivariate functions.  

We will not look at them in this course. 

 

2. The Newton-Raphson method 

 

We saw that if     is a local maximum of the objective function f and f is twice 

continuously differentiable, then f’(x*)=0 and f”(x*) is negative semi-definite. 

Conversely, if f’(x*)=0 and f”(x) is negative semi-definite in a neighbourhood N of x*, 

then x* is a local maximum.  
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This means that a local maximum of f(x) is a root of the gradient f’(x) of this function. 

But a root of the gradient f’(x) will be a maximum of f(x) only if the Hessian f”(x) is 

negative semi-definite in a neighbourhood of this root. Notice that if f is a n variable 

function, then its gradient is a n dimension vector and its Hessian a nxn matrix.  

 

The Newton-Raphson method is identical to applying Newton’s method to compute 

the root of the gradient of the objective function. So, we deduce from equation (3) of 

chapter 3 the iteration rule 

 (   )   ( )  [  ( ( ))]
  

  ( ( ))  (1) 

The analyst has to supply a guess  ( ) to begin the iteration. 

 

This method is very efficient if f is concave everywhere or at least on a large subset of 

  . Otherwise, the method can converge to a root of the Jacobian where the Hessian 

is not a negative semi-definite matrix in the neighbourhood of this root. Then, we will 

have computed a minimum or a saddle-point of the objective function, not a 

maximum!!!! 

 

For this reason the Newton-Raphson method is rarely used in practice, and then only 

if the objective function is globally concave. 

 

Equation (1) expresses that in iteration k+1 we move from  ( )  to  (   )  in the 

direction  (   )   ( )  [  ( ( ))]
  

  ( ( )), which is called the Newton-Raphson 

step. The idea of the other methods will be to move in a direction such that f(x) begins 

by increasing when one starts from  ( ) . We will stop moving when f(x) decreases by 

too much. Of course, we can look for the maximum of f(x) in this direction, for 

instance by using the golden search method. But actually, as we are going through a 

sequence of iterations, we will be satisfied if f(x) increases by a significant amount in 

the direction of the iteration, even if we have not reached its maximum in this 

direction. 

 

3. The Quasi-Newton method: how to find a good search direction 
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The idea of these methods is to substitute equation (1) by 

 (   )   ( )   ( ) ( )  ( ( ))  (2) 

 

 ( )   ( )  ( ( ))  is the product of a nxn matrix  ( ), which is used instead of the 

inverse Hessian, by the gradient of the objective function   ( ( )), which is a n vector. 

Thus,   ( )   is a n vector, which defines a direction, called quasi-Newton step.  ( ) is 

a scalar indicating how far we progress along the quasi-Newton step.  ( )  can be 

computed by a golden search method or by other univariate maximisation methods, 

which will be briefly presented in the next section. 

 

Quasi-Newton methods differ in how matrix  ( ) is computed. There are three main 

groups of methods. 

 

1. The method of the steepest ascent. We set  ( )    , where I is the identity 

matrix. So, the quasi-Newton step is identical to the gradient of the objective 

function at the current iterate  ( )    ( ( )) .The choice of gradient as a step 

direction is intuitively appealing because the gradient always points in the 

direction which, to a first order, promises the greatest increase in f . I have 

taken the following illustration from Wikipedia. 
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Here f is assumed to be defined on the plane, and that its graph has an invert 

bowl shape. The blue curves are the contour lines, that is, the regions on which 

the value of f is constant. A red arrow originating at a point shows the 

direction of the negative gradient at that point. Note that the (negative) 

gradient at a point is orthogonal to the contour line going through that point. 

We see that gradient ascent leads us to the top of the invert bowl, that is, to the 

point where the value of the function f is maximal. 

 

Or to tell these things in a simpler way: when you climb a hill you never 

follow the gradient line, but when you go down (and if you have good knees 

and ankles) you follow it. 

 

The steepest ascent method is simple to implement, but it is numerically less 

efficient in practice than competing quasi-Newton methods that incorporate 

information regarding the curvature of the objective function. 

 

http://en.wikipedia.org/wiki/File:Gradient_descent.png
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2. If we know  ( ) and  ( ) we can compute  (   ) with equation (1). We need 

a second iteration formula, to computes  (   ) when we know  ( ) and  (   ). 

We have the Taylor’s approximation 

  ( (   ))    ( ( ))    ( ( ))( (   )   ( )) 

 We deduce from this equation 

 (   )   ( )  [  ( ( ))]
  

[  ( (   ))    ( ( ))] 

 This equation suggests that the iteration formula on  (   ) should satisfy the 

 so-called quasi-Newton condition 

 ( )   (   )[  ( (   ))    ( ( ))] 

 

This condition imposes n conditions on the nxn  (   ) matrix. We also require 

this matrix to be symmetric and negative definite, as must be true of the 

inverse Hessian at a local maximum. The negative definiteness of  (   ) 

assures that the objective function value can be increased in the direction of 

the quasi-Newton step. 

 

There are two popular methods of updating  (   )  that satisfy these two 

constraints. The Davidson-Fletcher-Powell (DFP) method uses the updating 

scheme 

 (   )   ( )  
   

   
 

 ( )    ( )

   ( ) 
 

 where    (   )   ( ) 

 and     ( (   ))    ( ( )) 

 

 The Broyden-Fletcher-Goldfarb-Shano (BFGS) method uses the updating 

 scheme 

 

 (   )   ( )  
 

   
(        

   

   
   ) 

where      ( )  
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In both methods we can set  ( )   , as in the steepest ascent method. When 

we use one of these methods, sometimes it works, sometimes it does not work. 

So, you are advised trying both (and hope that at least one of them works). 

 

There are a few important practical tricks with these three methods, which are 

explained in the book by Miranda and Fackler.  

 

3. There are two important econometric problems where we can use other ways 

of computing matrix  (   ). 

 

 The nonlinear univariate regression model is 

     ( )    , with   a k-vector of parameters and i=1,…,n identifies 

the observations. 

Let us define  ( ) as the n-vector with generic element   ( ). The 

nonlinear least squares (NLLS) estimator of   is the solution of the 

minimisation problem 

   
 

 

 
  ( ) ( ) 

The gradient of the objective function is [
  ( )

  
]
 

 ( ) 

The Hessian of the objective function is  

 [
  ( )

  
]
   ( )

  
 ∑   

 
   ( )

    ( )

     
 

If we ignore the second term in the Hessian, we are assumed of having 

a positive definite matrix with which to determine the search direction 

    {[
  ( )

  
]
   ( )

  
}
  

[
  ( )

  
]
 

 ( ) 

 

 In maximum likelihood problems we have to maximise the log-

likelihood function, which is the sum of the logs of the likelihoods of 

each of the data points 

 (   )  ∑   (    )
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The score function at point y,  (   ),  is defined as the column vector 

of derivatives of the log-likelihood function evaluated at this point. For 

instance, the score function at observation i is the k vector 

 (    )  
  (    )

  
 

 

A well known result in statistical theory is that the expectation of the 

outer product of the score function,  (   ) (   ) , is equal to the 

negative of the expectation of the second derivative of the likelihood 

function, which is known as the information matrix. 

Either the information matrix or the sample average of the outer 

product of the score function provides a positive definite matrix that 

can be used to determine a search direction. In general the second 

matrix is much easier to compute. Then, the search direction is defined 

by 

   [∑ (    )

 

   

 (    ) ]

  

∑ (    )

 

   

 

 

4. Line Search Methods 

  

At iteration k we first have to compute a direction to move, starting at point  ( ) , 

then we have to determine where to stop in this direction to get point  (   ) . 

Section 3 explained how to compute this direction. We already told that point 

 (   )  can be taken as the maximum of the objective function in this direction, 

and that this maximum can be computed by the golden search method. However, 

this computation can take time, and we do not need to compute the maximum of 

function f. The choice of a point  (   )  , which significantly increases the value 

of the objective function, will be quite satisfactory. 

 

We will just give a basic idea of the line search methods by presenting the 

Goldstein criterion on the following graph. 
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We start at point  ( )  and know the value of the derivative   ( ( )) . By a system of 

trials and errors we compute a point  (   ) such that   

   
 ( ( ))  

 ( (   ))  ( ( ))

 (   )  ( )     
 ( (   )), with           

Thus, the point ( (   )  ( (   ))) will be inside the angle between the two lines 

   
 ( ( )) and    

 ( ( )). In general this point will not be the maximum of function 

f. But we will have  ( (   ))   ( ( )). Usually we take         and        . 

 

5. The end of the example of chapter 4 

 

At the end of chapter 4 we drew a graph showing that the households’ utility function 

is a concave function of the tariff rate t and the pollution tax rate s. the end of the 

program computes the optimal values of these two variables. 

 

We get 

Uc = 

    3.5574 

Uopt = 

 ( ) 
x 

f(x) 

  ( ( )) 

    ( ( )) 

    ( ( )) 



 11 

    3.5951 

topt = 

    0.3459 

sopt = 

    0.2028  

 

In the table of chapter 4 we can see these results on the line T=1 and      . I noted 

that the utility index in the model has the same dimension as a consumption index. 

When we move from zero to optimal tariff and tax this utility increases in percentage 

by 

>> 100*(Uopt/Uc-1) 

ans = 

    1.0608 

 

An increase of households’ consumption by 1 percent looks weak (the tariff rate 

increases from 0 to 34.59% and the taxation rate of manufacturing good increases 

from 0 to 20.28%). In general the evaluation by neoclassical computable general 

equilibrium models of the effects of big reforms of the tax or trade protection system 

lead to effects of this order of magnitude, an increase in consumption by no more than 

1 or 2 percent.   

 

 


