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CHAPTER 3. NONLINEAR EQUATIONS 

 

This chapter is based on Chapter 3 of the book by Miranda and Fackler.  

Nonlinear equations generally arise in one of two forms. In the nonlinear rootfinding problem,a 

function f from   to  is given, and one must compute a n-vector x, called a root of f, that 

satisfies 

f(x)=0 

In the nonlinear fixed-point problem, a function g from  to   is given, and one must 

compute a n-vector x, called a fixed-point of g, that satisfies 

x=g(x) 

The two forms are equivalent. The rootfinding problem may be recast as a fixed-point problem 

by letting g(x)=x-f(x); conversely, the fixed-point problem may be recast as a rootfinding 

problem by letting  f(x)=x-g(x). 

 

1. Bisection method 

The bisection method is the simplest and most robust method for computing the root of a 

continuous real-valued function defined on a bounded interval of the real line. If f is continuous, 

and  f(a) and f(b) have different signs, then f must have at least one root x in [a,b]. 

The bisection method is an iterative procedure. Each iteration begins with an interval known to 

contain a root of f, because the function has different signs at the interval endpoints. The interval 

is bisected into two subintervals of equal length. One of the two subintervals must have 

endpoints of different signs and thus must contain a root of f. This subinterval is taken as the new 

interval with which to begin the subsequent iteration. In this manner, a sequence of intervals is 

generated, each half the width of the preceding one, and each known to contain a root of f. The 
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process continues until the width of the bracketing interval containing a root shrinks below an 

acceptable tolerance. 

We will use this method to find the root of the function . We have f(1)=-1<0 and 

f(2)=8-2=2>0. So, we set a=1 and b=2. 

First, we create a function M-file called f. 

function y=f(x) 
y=x^3-2; 

 

Then, we set in the command window 

>> a=1;b=2; 

 

Then, we define the convergence tolerance 

>>tol=1e-09; 

 

Then, we write the program of the method in a script M-file called bisection 

 
s=sign(f(a)); 
x=(a+b)/2; 
d=(b-a)/2; 
iter=0; 
while d>tol 
    d=d/2;d 
    if s == sign(f(x)) 
        x=x+d; 
    else 
        x=x-d; 
    end 
    iter=iter+1; 
end; 
iter, x 

 

The function sign returns -1, 0, or 1 if its argument is negative, zero, or positive, respectively. 
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d will be printed. So, we can see how the interval bracketing the root becomes smaller and 

smaller.  

 

iter is a counter, which will show how many loops are necessary to compute the root of equation 

f. 

 

We get  

d = 

  9.3132e-010 

 

iter = 

    29 

 

x = 

    1.2599  

 

Instead of writing the bisection program, we could have used the function bisect of Compecon 

>> x=bisect('f',1,2) 

 

The first input is the name of the function M-file, which computes the value of function f(x). f is 

put between quotes ‘’ because the name of this file is a script. The two other inputs are the values 

of a and b , which define the original bracket where we look for a root of f(x). 

 

2. Function Iteration 

 

We remind that in the nonlinear fixed-point problem, a function g from   to  is given, and 

one must compute a n-vector x, called a fixed-point of g, that satisfies 

x=g(x) 
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Function iteration begins with the analyst supplying a guess  for the fixed point of g. 

Subsequent iterates are generated using the simple iteration rule 

 

If the iterates converge they converge to a fixed point of g. 

 

In theory, function iteration is guaranteed to converge to a fixed point of g if the initial value of x 

supplied by the analyst is “sufficiently” close to a fixed point x* of g  at which . 

Function iteration however, often converges, even when the sufficient conditions are not met. 

The main advantage of this method is that it is easy to implement. 

 

We can illustrate this method in the case of a univariate function g(x). The graph of function g(x) 

intersects the 45 degrees line at point (x*, x*). 
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The example will assume that . We first create a function M-file g 

 
function y=g(x) 
y=x^0.5+2; 

 

Then, we create the script M-file fixedpoint 

 
maxit = 100; 
tol   = 1e-10; 
x=0; 
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for it=1:maxit  
   gval = g(x); 
   if norm(gval-x)<tol 
       it,gval, x 
       return  
   end  
   x = gval; 
end 
warning('Failure to converge in fixpoint') 

 

 

We get the result 

 

>>  

 

it = 

 

    20 

 

 

gval = 

 

    4.0000 

 

 

x = 

 

    4.0000 

 

 

3. Newton’s Method 

 

Most nonlinear models are solved using Newton’s method or one of its variants. Newton’s 

method is based on the principle of successive linearization. Successive linearization calls for a 

hard nonlinear problem to be replaced with a sequence of simpler linear problems whose 

solutions converge to the solution of the nonlinear problem. 
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Let f be a function from   to . We must compute a n-vector x that satisfies f(x)=0. The 

Newton’s method begins with the analyst supplying a guess  for the root of f. Given , the 

subsequent iterate  is computed by solving the linear rootfinding problem obtained by 

replacing  f with its first-order Taylor approximation about : 

        (1) 

This approach yields the iteration rule 

           (2) 

We can see that  is the root of the linear approximation (1). We can compute it by the 

methods presented in chapter 2, for example a L-U factorization.   is a vector of 

dimension n and  , which is the Jacobian of , is a matrix of dimension nxn. 

 

However, a root of the linear approximation (1) of f(x) is not a root of f(x).Thus, we have to go 

through a sequence of iterations. 

 

In theory, Newton’s method converges if f is continuously differentiable and if the initial value 

of x is “sufficiently” close to a root of f at which f’ is invertible. There are nice functions, for 

which the choice of the initial guess has no consequence. However, there are nasty functions, 

which behave erratically, and such that the Newton’s method will diverge except for initial 

guesses quite near the solution we are trying to compute. 

 

The following MATLAB script, NEWTON.m, computes the root of a function f using Newton’s 

method. It assumes that the user has provided an initial guess x for the root, a convergence 

tolerance tol, and an upper limit maxit on the number of iterations. It calls user-supplied routine 

ff that computes the value fval and the Jacobian fjac of the function at an arbitrary point x. 

 
for it=1:maxit 
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    [fval,fjac]=ff(x); 
    x=x-fjac\fval; 
    if norm(fval)<tol, break, end 
end 
it 

 

 

This script will be used to compute a very simple Cournot’s equilibrium.  We have to compute 

the solution of the two equations 

, for i=1,2 

 

 is the output of firm i ,  is the price-elasticity of the demand function and  is the marginal 

cost of firm i. We assume  ,  and .  

 

We write the function M-file ff 

 
function [fval,fjac]=ff(q) 
c=[0.6;0.8]; eta=1.6; e=-1/eta; 
fval=sum(q)^e+e*sum(q)^(e-1)*q-diag(c)*q; 
fjac=e*sum(q)^(e-1)*ones(2,2)+e*sum(q)^(e-1)*eye(2)... 
    +(e-1)*e*sum(q)^(e-2)*q*[1 1]-diag(c); 

 

Finally, we type in the command window 

>> x=[0.2 ;0.2];tol=1e-10;maxit=20; 

>> NEWTON; x 

The initial guess is an output of 0.2 for each firm. We get 

it = 

     6 
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x = 

    0.8396 

    0.6888 

 

The algorithm converges in 6 iterations. The outputs of firms 1 and 2 respectively are 0.8396 and 

0.6888. You remember that firm 2 has a higher marginal cost than firm 1. 

 

We could also have used the function newton.m of Compecon 

q=newton('ff',[0.2;0.2]); 

>> q 

We get 

q = 

    0.8396 

    0.6888 

 

The following graph gives an illustration of the Newton’s method in the univariate case 
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The algorithm begins with the analyst supplying a guess  for the root of f. The function f 

is then approximated by its first-order Taylor series expansion about , which is 

graphically represented by the line tangent to f at . The root   of the tangent line is 

then accepted as an improved estimate for the root of f. The step is repeated, with the root 

 of the line tangent to f at  taken as an improved estimate for the root of f , and so on. 

The process continues until the roots of the tangent line converge. 

X* 
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4. Quasi-Newton Methods 

Quasi-Newton methods are based on the same successive linearization principle as Newton’s 

method, except that they replace the Jacobian  f’  with an approximation that is easier to 

compute. Computing this Jacobian at each iterations may be cumbersome and the interest of 

the Quasi-Newton method is avoiding this computation. The price to pay for this 

simplification is that Quasi-Newton methods converge more slowly than Newton’s methods. 

 

The secant method is the most widely used univariate quasi-Newton method. The secant 

method is identical to the univariate Newton method, except that it replaces the derivative of 

f with an approximation constructed from the function values at the two previous iterates 
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This approximation of derivative ( )( )kxf '  is good when ( ) ( )1−− kk xx  is small. However, in the 

first iterations, this difference may be large. Moreover, unlike the Newton method, the secant 

method requires two starting values rather than one, or a guess on the solution and another 

guess on the value of the derivative at the solution. 

Finally, we use the iteration rule 
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Broyden’s method is the most popular multivariate generalization of the univariate secant 

method. Broyden’s method generates a sequence of vectors ( )kx  and matrices ( )kA  that 

approximate the root of f and the Jacobian f’ at the root respectively. Broyden’s method 
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begins with the analyst supplying a guess ( )0x  for the root of the function and a guess ( )0A  

for the Jacobian of the function at the root. Often, ( )0A  is set equal to the numerical Jacobian 

of f at ( )0x . 

 

We have to explain what a numerical Jacobian is. We will limit our explanation to the case 

when f and x have one dimension. The extension to the case of n dimensions is trivial.  The 

definition of a derivative is  

( ) ( ) ( )
h

xfhxfxf
h

−+
=

→0
lim'  

This definition suggest to compute the derivative of function f at x  by the expression 

( ) ( ) ( )
h

xfhxfxf −+
≈' , where h is a small number. 

As f(x) has probably been computed yet, the computation of the value of its derivative 

requires to compute one more values of this function, which is f(x+h). 

A more precise approximation of the derivative is given by 

( ) ( ) ( )
h

hxfhxfxf
2

' −−+
≈  

However, this expression requires the computation of two (and not only one) values of f : 

f(x+h)  and f(x-h). Section 5.6 of the book by Miranda and Fackler gives more explanation. 

Let us come back to Broyden’s method.   

 

Given ( )kx  and ( )kA , one updates the root approximation by solving the linear rootfinding 

problem obtained by replacing f with its first-order Taylor approximation about ( )kx  
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( ) ( )( ) ( ) ( )( ) 0=−+= kkk xxAxfxf  

This step yields the root approximation iteration rule 

( ) ( ) ( )( ) ( )( )kkkk xfAxx 11 −+ −=  

Broyden’s method then updates the Jacobian approximant ( )kA  by using the following 

extension of the secant condition 

( )( ) ( )( ) ( ) ( ) ( )( )kkkkk xxAxfxf −=− +++ 111  

However, this condition imposes n conditions to compute the nxn matrix ( )1+kA . To solve this 

indetermination we will retain among all the matrices ( )1+kA  consistent with this condition, 

the one, which is the nearest of ( )kA . Finally, we have the iteration rule (which satisfies the 

previous condition) 

( ) ( ) ( )( ) ( )( ) ( ) ( )[ ]
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( ) ( )kk

k
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'
'11 −−+= ++ , with ( ) ( ) ( )kkk xxd −= +1  

 

CompEcon includes a routine broyden. We will uses it on the same problem as in last section 

>> q=broyden('ff',[0.2;0.2]); 

>> q 

 

q = 

    0.8396 

    0.6888 
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5. Tricks and advices  

 

We remind that the Newton’s method is based on the iteration rule 

( ) ( ) ( ) ( ) ( )( )[ ] ( )( )kkkkkk xfxfxdxx 11 ' −+ −=+=  

 This rule can lead to a huge change ( ) ( )kk xx −+1 , which can lead ( )1+kx  further from the root x* 

than  ( )kx , especially in the beginning of the iteration process if ( )0x  has been taken far from x*. 

Thus, the iteration rule will diverge. We can see that by noticing that the Euclidean norm 
( )( )kxf  increases with k instead of decreasing. A solution to this problem is to use the iteration 

rule  

( ) ( ) ( ) ( ) ( )( )[ ] ( )( )kkkkkk xfxfxdxx 11 ' −+ −=+= λλ , with 10 << λ , 

This dampening of the iteration rule will increase the number of steps but will solve the problem 

of divergence at the beginning of the iteration process.  

Miranda and Fackler automate the choice of the value of parameter λ . Its default value is 1. But 

this value is divided by 2 each time the Euclidean norm ( )( )kxf  would otherwise increase. 

 

A sequence of iterate ( )kx  is said to converge to x* at a rate of order p if there is a constant C>0 

such that  

( ) ( ) pkk xxCxx **1 −≤−+  

for sufficiently large k. In particular, the rate of convergence is said to be linear if C<1 and p=1, 

superlinear if 1<p<2, and quadratic if p=2. 
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The bisection method converges at a linear rate with C=1/2. The function iteration method 

converges at a linear arte with C equal to ( )*' xf  . The secant AND Broyden methods converge 

at a superlinear rate with 62.1≈p . And Newton’s method converges at a quadratic rate. The 

rates of convergence are asymptotically valid, provided that the algorithms are given “goo’ initial 

data. 

The rate of convergence is not the only criteria for choosing a method. For instance, each 

iteration of the Newton’s method asks for more computation than the other method. The 

computation of the Jacobian can sometimes be very difficult, etc. 


