
5/22/2009 1

CHAPTER 2. LINEAR EQUATIONS

This chapter is based on Chapter 2 of the book by Miranda and Fackler.

In a linear equation a nxn matrix A and a n-vector b are given, and one must compute the n-

vector x that satisfies Ax=b.

There are few linear models in economics. However, linear equations arise as elementary tasks in

solution procedures designed to solve more complicated nonlinear models. For example, a static

general equilibrium model may be represented by a system of nonlinear equations, which can be

solved using Newton’s method, which involves solving a sequence of linear equations. The Euler

functional equation of a rational expectations model may be solved using a collocation method,

which yields a nonlinear equation that in turn is solved as a sequence of linear equations.

1. L-U Factorization

Some linear equations Ax=b are relatively easy to solve. For example, if A is a lower

triangular matrix

Then, the elements of x can be computed recursively using forward substitution

5/22/2009 2

…

This computation can easily be implemented in MATLAB

>> for i=1:length(b)

x(i)=(b(i)-A(i,1:i-1)*x(1:i-1))/A(i,i);

end

If A is an upper triangular matrix, then the elements of x can be computed recursively using

backward substitution.

Most linear equations encountered in practice, do not have a triangular A matrix. In such

cases, the linear equation is often best solved using the L-U factorization algorithm. The L-

U algorithm is designed to decompose the A matrix into the product of lower and upper

triangular matrices, allowing the linear equation to be solved using a combination of

backward and forward substitution. The L-U algorithm involves two phases.

In the first factorization phase, Gaussian elimination is used to factor the matrix A into the

product

A=LU

5/22/2009 3

of a row-permuted lower triangular matrix L and an upper-triangular matrix U. A row-

permuted lower triangular matrix is simply a lower triangular matrix that has had its rows

rearranged.

In the solution phase of the L-U algorithm, the factored linear equation

Ax=(LU)x=L(Ux)=b

is solved by first solving

Ly=b

for y using forward substitution, accounting for row permutations, and then solving

Ux=y

for x using backward substitution.

Consider, for example, the linear equation Ax=b where

A=[-3 2 3;-3 2 1;3 0 0];A

A =

 -3 2 3

 -3 2 1

 3 0 0

>> [L U]=lu(A); L,U

L =

 1 0 0

5/22/2009 4

 1 0 1

 -1 1 0

U =

 -3 2 3

 0 2 3

 0 0 -2

The matrix L is row-permuted lower triangular; by interchanging the second and third rows,

a lower diagonal matrix results. The matrix U is upper triangular. Solving Ly=b for y using

forward substitution involves solving for y1, then for y2, and finally for y3. Given the solution

y=[10 7 -2], the linear equation Ux=y can then be solved using backward substitution,

yielding the solution of the original linear equation, x=[-1 2 1].

For large n, it takes approximately n
3
/3+n

2
 long operations (multiplications and divisions) to

solve a nxn linear equation using L-U factorization. Explicitly computing the inverse of A

and then computing A
-1

b requires n
3
+n

2
 long operations. Using Cramer’s rule requires

approximately (n+1)! long operations. To solve a 10x10 linear equations, L-U factorization

requires 430 long operations, matrix inversion and multiplication requires 1,100 long

operations, and Cramer’s rule require 40 million long operations. Thus, the Cramer’s rule is

never used. If you have to solve the sequence of systems Axj =bj, for j=1,…,m, computing

the inverse of A and multiplying it by bj, is more efficient if m is greater than 3 or 4.

Otherwise, the L-U factorization is more efficient.

5/22/2009 5

In MATLAB the solution to the linear equation Ax=b is returned by the statement x=A\b.

MATLAB uses the L-U factorization method, except when a simpler method is available

(for instance if A is symmetric and positive definite, see further).

>> b=[10;8;-3];b

b =

 10

 8

 -3

>> x=A\b;x

x =

 -1

 2

 1

2. Gaussian Elimination

The L-U factors of a matrix A are computed using Gaussian elimination. The Gaussian

elimination algorithm begins with matrices L and U initialized as L=I and U=A, where I is

the identity matrix.

>> A=[2 0 -1 2;4 2 -1 4; 2 -2 -2 3; -2 2 7 -3];A

5/22/2009 6

A =

 2 0 -1 2

 4 2 -1 4

 2 -2 -2 3

 -2 2 7 -3

>> L=eye(4);U=A;L,U

L =

 1 0 0 0

 0 1 0 0

 0 0 1 0

 0 0 0 1

U =

 2 0 -1 2

 4 2 -1 4

 2 -2 -2 3

 -2 2 7 -3

5/22/2009 7

The first stage of Gaussian elimination is designed to nullify the subdiagonal entries of the

first column of the U matrix. The U matrix is updated by subtracting 2 times the first row

from the second, subtracting 1 time the first row from the third, and subtracting -1 times the

first row from the fourth. Then, the subdiagonal entries of matrix U become zero. The L

matrix, which initially equals the identity, is updated by storing the multipliers 2, 1 and -1 as

the subdiagonal entries of its first column.

>> U(2,:)=U(2, :)-2*U(1,:); U(3,:)=U(3, :)-1*U(1,:); U(4,:)=U(4, :)-(-1)*U(1,:);U

U =

 2 0 -1 2

 0 2 1 0

 0 -2 -1 1

 0 2 6 -1

>> L(2,1)=2;L(3,1)=1;L(4,1)=-1;L

L =

 1 0 0 0

 2 1 0 0

 1 0 1 0

 -1 0 0 1

After the first stage of Gaussian elimination we still have A=LU.

5/22/2009 8

The second stage elimination is designed to nullify the subdiagonal entries of the second

column of the U matrix. The U matrix is updated by subtracting -1 times the second row

from the third and subtracting 1 times the second row from the fourth. The L matrix is

updated by storing the multipliers -1 and 1 as the subdiagonal elements of its second column.

>> U(3,:)=U(3, :)-(-1)*U(2,:); U(4,:)=U(4, :)-1*U(2,:);U

U =

 2 0 -1 2

 0 2 1 0

 0 0 0 1

 0 0 5 -1

>> L(3,2)=-1;L(4,2)=1;L

L =

 1 0 0 0

 2 1 0 0

 1 -1 1 0

 -1 1 0 1

5/22/2009 9

After the second stage of Gaussian elimination we still have A=LU.

In the third stage of Gaussian elimination, one encounters an apparent problem. The third

diagonal element of matrix U is zero, making it impossible to nullify the subdiagonal entry

as before. This difficulty is easily remedied by interchanging the third and fourth rows of U.

The L matrix is updated by interchanging the previously computed multipliers residing in

the third and fourth columns.

>> v=U(3,:);U(3,:)=U(4,:);U(4,:)=v;U

U =

 2 0 -1 2

 0 2 1 0

 0 0 5 -1

 0 0 0 1

>> v=L(:,3);L(:,3)=L(:,4);L(:,4)=v;L

L =

 1 0 0 0

 2 1 0 0

 1 -1 0 1

5/22/2009 10

 -1 1 1 0

The Gausssian elimination algorithm terminates with a permuted lower triangular matrix L

and an upper triangular matrix U whose product is the matrix A.

> LU=L*U; LU, A

LU =

 2 0 -1 2

 4 2 -1 4

 2 -2 -2 3

 -2 2 7 -3

A =

 2 0 -1 2

 4 2 -1 4

 2 -2 -2 3

 -2 2 7 -3

In theory, Gaussian elimination will compute the L-U factors of any matrix A, provided A is

invertible. If A is not invertible, Gaussian elimination will detect this fact by encountering a

5/22/2009 11

zero diagonal element in the U matrix that cannot be replaced with a nonzero element below

it.

Gauss elimination uses additions and subtractions of rows of matrices, which may have been

multiplied by elements of these matrices. If all the elements of matrix A are of the same

order of magnitude (do not differ by more than 1 to 1,000), we will meet no problem.

Otherwise, we would have to add or subtract numbers of very different magnitudes, and that

may create problems. Pivoting, which means interchanging rows during Gaussian

elimination in order to make the magnitude of diagonal elements as large as possible,

substantially enhances the reliability and accuracy of a Gaussian elimination routine.

However, pivoting cannot cure all the problems caused by rounding error. Some linear

equations are inherently difficult to solve accurately on a computer, despite pivoting. The

difficulty occurs when the A matrix is structured in such a way that a small perturbation

in the vector b induces a large change in the solution vector x. In such a case the A

matrix is said to be ill-conditioned. We can compute the condition number of matrix A by

typing

>> cond(A)

ans =

 51.8900

Numerical analysts often use the rough rule of thumb that for each power of 10 in the

condition number, one significant digit is lost in the computed solution vector x. Thus, if A

5/22/2009 12

has a condition number of 1,000, the computed solution vector x will have about three fewer

significant digits than vector b.

When, you write an economic model, you should be careful with the choices of the units. If

you express the population in number of people, for instance 63,000,000 in France, and the

inflation rate as .02, you will probably have ill-conditioned matrices when you simulate your

model. The values of the variables should be of the same orders of magnitude. Thus, express

population in millions of people and the inflation rate in percent: 63 and 2.

3. Cholesky Factorization

There are plenty of ways of decomposing a matrix, besides the L-U factorization. If matrix A

is symmetric positive definite (a covariance matrix for instance) you can use the Cholesky

factorization, which requires only half as many operations as general Gaussian elimination

and has the added advantage that it is less vulnerable to rounding error and does not require

pivoting.

Then we have

A=U’U

where U is upper triangular and U’ is its transpose. Then, the linear equation

Ax=U’Ux=U’(Ux)=b

may be solved efficiently by using forward substitution to solve

U’y=b

5/22/2009 13

and then using backward substitution to solve

Ux=y

The MATLAB \ operator will automatically employ Cholesky factorization, rather than L-U

factorization, to solve the linear equation if it detects that A is symmetric positive definite.

>> A = pascal(6)

A =

 1 1 1 1 1 1

 1 2 3 4 5 6

 1 3 6 10 15 21

 1 4 10 20 35 56

 1 5 15 35 70 126

 1 6 21 56 126 252

>> R = chol(A)

R =

 1 1 1 1 1 1

5/22/2009 14

 0 1 2 3 4 5

 0 0 1 3 6 10

 0 0 0 1 4 10

 0 0 0 0 1 5

 0 0 0 0 0 1

>> R'*R

ans =

 1 1 1 1 1 1

 1 2 3 4 5 6

 1 3 6 10 15 21

 1 4 10 20 35 56

 1 5 15 35 70 126

 1 6 21 56 126 252

4. Iterative Methods

Algorithm based on Gaussian elimination are called exact because they would generate exact

solutions for the linear equation Ax=b after a finite number of operations, if not for rounding

error. Such methods are ideal for moderately sized linear equations but may be impractical

for larger ones.

5/22/2009 15

Other methods, called iterative methods, can often be used to solve large linear equations

more efficiently if the A matrix is sparse, that is, if A is composed mostly of zeros entries.

Iterative methods are designed to generate a sequence of increasingly accurate

approximations to the solution of a linear equation, but they generally do not yield an exact

solution after a prescribed number of steps, even in theory. We will see that these methods

can easily be extended to nonlinear equations and so have been extremely used in

macroeconomics.

We choose an easily invertible matrix Q and write the linear equation in the equivalent form

Qx=b+(Q-A)x

or

x=Q
-1

b+(I- Q
-1

A)x

This form of the linear equation suggests the iteration rule

x
(k+1)

=Q
-1

b+(I- Q
-1

a) x
(k)

which, if convergent, must converge to a solution of the linear equation.

Ideally, the so-called splitting matrix Q will satisfy two criterias. First, Q
-1

b and Q
-1

A

should be relatively easy to compute. This criteria is met if Q is either diagonal or triangular.

Second, the iterates should converge quickly to the true solution of the linear equation. If

||I- Q
-1

A ||<1

5/22/2009 16

n any matrix norm, then the iteration rule is a contractionary mapping and is guaranteed to

converge to the solution of the linear equation from any initial value. The smaller the value

of the matrix norm ||I- Q
-1

A ||<1, the faster the guaranteed rate of convergence of the iterates

when measured in the associated vector norm.

The two most popular iterative methods are the Gauss-Jacobi and Gauss-Seidel methods. The

Gauss-Jacobi sets Q equal to the diagonal matrix formed from the diagonal entries of A. The

Gauss-Seidel method sets Q equal to the upper triangular matrix formed from the upper-

triangular elements of A. Both methods are guaranteed to converge from any starting value if

A is diagonally dominant, that is if

n

ji
i

ijii AA
1

, i

Diagonally dominant matrices arise naturally in many computational economic applications.

Let us continue with an exercise

>> A=[54 14 -11 2;14 50 -4 29;-11 -4 55 22;2 29 22 95]; b=ones(4,1); A,b

A =

 54 14 -11 2

 14 50 -4 29

 -11 -4 55 22

 2 29 22 95

5/22/2009 17

b =

 1

 1

 1

 1

The L-U factorization can be applied by

>> x=A\b;x

x =

 0.0189

 0.0168

 0.0234

 -0.0004

Let us compute the solution of the equation by using Gauss-Jacobi iteration

>> d=diag(A);x=b;

for it=1:30

dx=(b-A*x)./d;

x=x+dx;

5/22/2009 18

if norm(dx)<0.0001, break, end

end

>> it, norm(dx),x

it =

 17

ans =

 7.9279e-005

x =

 0.0189

 0.0168

 0.0234

 -0.0004

We specified an initial guess for the solution of the linear equation, b (we could have

specified zero). Iterations continue until the norm of the change dx falls below the specified

convergence tolerance, set here to 0.0001 or until a specified number of allowable iterations

set here to 30 are performed. It takes 17 iterations to the algorithm to reach a precision of

four digits.

5/22/2009 19

The following MATLAB script solves the same linear equation using Gauss Seidel iteration

>> Q=tril(A);x=b;

>> for it =1:30

dx=Q\(b-A*x);

x=x+dx;

if norm(dx)<0.0001, break, end

end

>> it, norm(dx), x

it =

 10

ans =

 5.8460e-005

x =

 0.0189

 0.0168

 0.0233

 -0.0004

5/22/2009 20

This method has converged in a smaller number of iterations.

If we were lazy we would have used the two following commands from compecon

>> x=gjacobi(A,b)

x =

 0.0189

 0.0168

 0.0234

 -0.0004

>> x=gseidel(A,b)

x =

 0.0189

 0.0168

 0.0234

 -0.0004

