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INTRODUCTION 
 
These notes are intended for students having no knowledge in econometrics and 
little knowledge in statistics and in probability.  
 
For a long time, the tradition in France was to teach econometrics the hard way. In a 
first stage, students had to learn plenty of mathematical results on various classes of 
estimators and tests. During this time they had to believe that their arid investment 
will be profitable in the future and will allow them to deal with economic data and to 
answer economic problems. Later on they could turn to applications.  
 
A problem with this method is that many students became discouraged during the 
first step of the process. Another problem was that many students who had reached 
the second step had a tendency to turn to very sophisticated and fragile methods 
when they faced simple practical problems. Sometimes, the results they reached 
were crazy when they mixed very complicated methods, with very elementary 
mistakes contradicting basic common sense. The most serious mistakes in 
econometrics, which can even be found in articles published by good journals, come 
from not spending time enough looking at the data, in a pragmatic way, without a 
priori and without the strong desire to apply complicated methods that are totally 
inappropriate for these data.  
 
These notes follow a completely different principle. I will introduce econometrics 
through a series of simple applications. I will use little mathematics, and I will be little 
rigorous. I will appeal to the common sense and the intuition of the reader to 
introduce the basic concepts, methods and traps of econometrics. I will try to show 
that econometrics is simple, and thinking in an econometric way is the same as 
thinking in an economic way. Sometimes, the developments will be a bit tricky, and I 
hope as funny as the kind of riddles and puzzles you can find in newspapers and 
magazines. The book by Berndt (quoted among the references) is entertaining and 
pleasant to read (with much gossip on the profession, so you can discover that 
econometricians are also human beings). Finally, econometric methods give answers 
to economic questions, and these answers must be understandable and look 
convincing to people who are experts of these questions and not econometricians. 
So, introducing students to econometrics through applications is sensible. 
 
There is a limit to the approach followed in these notes, and students are expected to 
feel it more and more when they progress in this course. Examples and intuition 
quickly meet their limits and to go further we must use logical and rigorous methods. 
So mathematics is unavoidable, and, after having read these notes students must 
learn a book of econometrics, which includes the mathematical foundations of this 
field. However, doing that in a second stage of learning, after having gone through 
these notes, will be a task much easier than starting directly with the mathematics of 
econometrics.  
 
There are many user-friendly econometric software. I will advise you to use E-Views 
or Stata. Both are known and used in the whole world and it is much wiser to learn 
and use a software that is a world standard. Loosely speaking E-Views is well 
adapted to macroeconomics (time series-data) and Stata to microeconomics 
(individual data). However, the availability of such user-friendly software may 
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encourage laziness and the absence of reflection. This is a pity because these 
software include powerful graphic capacities, and plenty of descriptive statistics, 
which are extremely precious to look at the data and to learn much of them1.  
 
Alexander Pope wrote: “Little learning is a bad thing”. Henri de Monfreid tells a nice 
story. When he was smuggling weapons on the Red Sea, he had a good friend, who 
was a policeman and the only French official on a small island near Djibouti. He told 
of his friend that he had the wisdom of men of the people who had not been spoiled 
yet by compulsory public education. Both comments are a bit arrogant and even 
reactionary, but they are basically true. Many applied econometricians use 
sophisticated methods, which were developed by experts in the field, and they apply 
them to their problems and data without further reflection. This imitation process has 
become very easy with the existing software and the availability of many programs on 
the websites of Eviews and Stata. In general these methods were correct for the 
problem they were designed for, and their developers did not make mistakes in their 
applications.  But the adaptation of these methods to problems they were not 
designed for can be awfully wrong. So, these applied econometricians make logical 
mistakes and draw silly conclusions. In my lifetime I read many strange papers of 
applied econometrics with results, which were meaningless, incomprehensible and 
unbelievable. These papers generally were in development economics and 
macroeconomics, but this can result from the fact that most of my readings are in 
these fields. These applied econometricians had a superficial knowledge of 
theoretical econometrics and tried to substitute recipes to logic. So, they had “little 
learning”2. However, they could have avoided their mistakes if they had not lost their 
common sense, the wisdom of the ignorant. These notes are quite insufficient to help 
you to solve the first problem. However, they will give you advice to help you not to 
progressively lose your common sense when you become more and more learned. 
These advices can be summed up in tow sentences. First, do not forget that you are 
an economist and that your econometric results must be explainable in plain French 
(or English) and without cheating, to a non-econometrician economist. Secondly, look 
carefully at the data and do not apply a method based on assumptions, which are 
contradicted by these data. In summary, econometrics must not make you lose your 
common sense.  
 
Econometrics is a set of quantitative tools for analysing economic data. Economists 
need to use economic data for three reasons: 1) to decide between competing 
theories; 2) to predict the effect of policy changes; 3) to forecast what may happen in 
the future. Three examples: Have PC increased the productivity of clerks and 
secretaries; How to evaluate and compare the efficiency of various policies against 
AID in Africa; How to forecast the demand for public transportation in a big city? 
 
Economists deal with different kinds of data: 
 
1. Time series data. For instance GDP data are collected every quarter. 
Macroeconomics and finance use such data. In macroeconomics frequencies are 

                                                           
1 If you want to write sophisticated programs, to solve computational problems, you’d better use Gauss or 
Matlab. 
2 This insufficiency can be combined with straight dishonesty. A complicated scientific method can be 
manipulated to defend conclusions, which agree with your ideology or your interest. This unfortunate situation 
especially happens in fields where there are hard political and ideological debates and conflicts.  
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annual, quarterly or monthly. Frequencies are much shorter in finance. I will use the 
following mathematical notation for a variable or series: tY , with: Tt ,..,2,1+ . T 
represents the number of observations. 
 
2. Cross-sectional data. For instance in a labour survey you interview 1000 workers 
of the chemistry industry on their wages, their labour conditions, etc. All these 
interviews take place at about the same date. Each question gives you as many 
answers as interviewed workers. Let us take for instance wages. I will use the 
following mathematical notation: iY , with: Ii ,..,2,1= . iY  represents the wages of 
worker i, and I is the number of surveyed workers. Cross-sectional data are mainly 
met in microeconomics (observations can bear on workers, households or firms). But, 
macroeconomics can use such data when it compares different countries (for 
instance their GDP per head). Time series data and cross-sectional data differ on a 
very important point. Time is oriented. The past comes before the future. You can 
use the past to forecast the future, but you cannot use the future to forecast the past. 
Of course, the past and the present depend on the expectations of the future by 
economic agents. But, the expected future is based on the experienced past, and not 
on the true future which is unknown. On the other hand, there is no natural way for 
orienting cross-sectional data. Because of its specificity the econometrics of time 
series data is a bit special (and in my opinion it is the most difficult part of 
econometrics). 
 
3. Panel data. In the above example you can track the same workers for several 
years and interview them periodically over this period of time. For instance, you can 
interview the same people on their wages every year for five years. I will use the 
following mathematical notation for the wages of worker i for year t: itY , with: 

Ii ,..,2,1=  and Tt ,...,2,1= . There is a special field of econometrics to deal with this 
kind of data. In most case, you will have a large number of individual units, and a 
small number of time periods (5 for example). This is the case in my example, and in 
most of microeconomics. Some macroeconomists use to work on a panel of 
countries or regional areas: for instance yearly data of 30 OECD countries on the 
1970-2000 period. Their problem is a bit different: a smaller number of individuals (30 
instead of 1000) and a larger number of periods (31 instead of 5). It is a controversial 
question if the traditional econometrics of panel data is appropriate to the kind 
problems macroeconomists face. The traditional econometric of panels can be a bit 
tricky and cumbersome, but it is quite consistent with intuition and common sense, 
and the mathematics it uses is elementary. 
 
4. Quantitative data and qualitative data. GDP is a quantitative data: it takes real 
values, for instance 900 thousand million dollars. But some other data can take only 
two values, which in general are not numbers. Examples of such data are genders 
(male or female), if a worker kept or lost his job for a given year, if a household owns 
or does not own a car. A difference between these two kinds of data is that 
quantitative data have a natural order: having a large GDP is better than having a 
small GDP. But the qualitative data above have no natural order. A more complicated 
case is when you consider qualitative data, which can take more than two values. For 
instance a household can own no car, 1 car, more than 1 car. In this case a natural 
order appears among the three values (but I could build examples when such an 
order would not appear, like spending your vacation in the countryside, in the 



Jean-Pierre Laffargue Page 6 15/05/2014 

mountains or on the seaside). Sometimes, a qualitative order appears, but you 
cannot make any quantitative comparisons between the possible values taken by the 
variable. For instance, you can survey African newspapers to discover if, after an IMF 
intervention, you will have: nothing, a big strike, big riots, or a revolution. A revolution 
is worse than a riot, but you cannot tell if it is three times or five times worse. On the 
other hand you can tell that French people are 8 times wealthier than Tunisian 
people. However, sometimes quantitative comparisons can be made for qualitative 
data, for instance if they represent the number of patents applied and received by 
firms. The econometrics of qualitative data, also called limited dependent variable, is 
a popular field of econometrics. The basis is simple to understand and to apply. But 
this simplicity disappears quickly when you try to go a little further than the most 
elementary cases. 
 
When your analyse data, you quickly discover that it is sometimes better to transform 
them. For instance, if you want to compare the quality of life between several 
countries, you should divide your data by the populations of the associated countries. 
Thus, you will compare the numbers of medical doctors per 1000 people. A useful, 
but tricky, transformation is to go from a variable in level (GDP for instance) to the 
growth rate of this variable. The growth rate of variable tY  will be denoted: 

11 /)( −−−= tttt YYYY& . Sometimes, economists prefer the approximation: 
)ln()ln( 1−−= ttt YYY& . You can multiply these formulae by 100 if you like having your 

growth rate in percentage points. You can notice that GDP and the growth rate of 
GDP do not have the same units. GDP is in dollars or euros. Its growth rate is a pure 
number, for instance 0.03 or 3%. Moreover, GDP has a trend, but its growth rate has 
no trend. You must not forget these differences when you write an economic 
equation. For instance it is sensible (and Keynesian) to write that consumption 
increases with income. But it is queer to write that the growth rate of consumption 
increases with income (and Keynes never claimed such a thing). 
 
A last transformation is to substitute a variable in level by its natural logarithm. This 
has two advantages. First, the values taken by the log are much smaller and vary on 
a much smaller range. Secondly, when you draw a graph of the evolution on the 
variable relatively to time, if it grows at a constant rate, you get an exponential for the 
variable in level but a straight line for the variable in logarithm 
 
References 
 

• Marno Verbeek: Modern Econometrics, 2nd edition, John Wiley, 2004. 
This is the book I advise students to buy and to read as soon as they have been 
through my course. In 400 pages it covers the whole field of econometrics at the 
introductory and medium-advanced levels (so the book can be used as a tutorial and 
a reference). It mixes econometric theory and applied econometrics, with plenty of 
examples on real data and interesting problems. The data can be unloaded from the 
website of the author. The theoretical elements are well explained, without excessive 
use of abstract mathematics, but with much precision and without mistakes. A 
difficulty with basic econometrics is that many elementary results are unimportant for 
applications and should be skipped in a first course. However, sophisticated and 
recent results are sometimes essential for applications and must be introduced in a 
first course, but in a simplified way. The author of this book succeeds well in doing 
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that. Some questions, which I think important for practitioners, robust econometrics 
and the foundations of the concepts of exogeneity, are absent of this book. However, 
other concepts, which are also very important for practitioners, do not appear in my 
notes, but are well developed in the book. The author of this book takes strong 
positions on the various methods he presents, and gives advises on the mistakes 
many practitioners do when they apply these methods. The first half the book is 
about general econometrics. The second half presents the econometrics of specific 
fields: limited dependant variables, time series, and panel data). So, I advise students 
to buy this book (orders through amazon.co.uk are executed promptly, do not try 
cheaper but unreliable booksellers on line). 
 

• Peter Kennedy: A Guide to Econometrics, 4th edition, The MIT Press, 1998. 
This book is for practitioners and is centred on the mistakes to avoid when you do 
applied econometrics. Its chapters are divided into three parts. The first, written with 
large letters, presents very elementary things. The second, written with medium-sized 
letters, is more advanced. The third, written with small letters, is very advanced. 
There are no mathematical developments, but there are many theoretical results, 
some formulae, and mathematics are never very far in the background. Thus, this 
book is more advanced than my notes (and much more rigorous). There have been 
(at least) four editions, each much richer than the previous one. Thus, you can see 
that this book met a tremendous success in the whole world. 
 

• Gary Koop: Analysis of Economic Data John Wiley and Sons, Chichester, 
2000.  

This is a book written for students in business, who hate mathematics. Many ideas of 
my notes were taken from this volume 
 

• Chandan Mukherjee, Howard White and Marc Wuyts: Econometrics and data 
analysis for developing countries, Routledge, London and New York, 1998.  

The first version of my course was based on this book. The parts of my notes on 
robust regressions are mostly taken from it. 
 

• Ernst R. Berndt: The Practice of Econometrics, Addison-Wesley, Reading, 
1991. 

Each chapter presents the history of an economic problem (the capital asset pricing 
model, hedonic prices, etc.) and of the solutions applied economists gave to this 
problem. Each chapter ends with problems using the data used by these economists 
and asking to reproduce their results or variants of their results. Moreover, each 
chapter deals with a specific econometric problem (bivariate analysis, multivariate 
analysis, etc.). The book is extremely pleasant to read and very lively. One or two 
chapters (those connected to time series econometrics and macroeconomics) have 
become a little old fashioned, but the others are still fully actual. 
 

• The tutorial manual of E-Views is an excellent book of applied econometrics. 
You will find it in the help of the softwarefor versions 4 and 5. You will find an 
excellent course teaching how to use Stata on South African survey data on 
the website http://saproject.psc.isr.umich.edu/  . 

 
Finally, if you want to go further than these notes, I advise you to attend one or 
several courses in theoretical econometrics. In this field self learning is difficult, even 



Jean-Pierre Laffargue Page 8 15/05/2014 

with the excellent books I quoted above. 
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CHAPTER 1. DESCRIPTIVE STATISTICS 
 
Graphs 
 
When you have data, the first thing to do is to look at them by drawing well-chosen 
graphs. Excel and E-Views are complementary instruments to do that. We will go 
through a few examples.  
 
First, Koop\exruk.xls, gives monthly time series data from January 1947 through 
October 1996 of the UK pound / US dollar exchange rate. Draw the time series 
graph. Comment 
 
Second, Koop\gdppc.xls, contains cross-sectional data on real GDP per capita in 
1992 for 90 countries in US dollars using PPP exchange rates. Draw the histogram. 
Draw the kernel density. Notice the bimodal distribution of GDP per head.  
 
Third, Koop\forest.xls, contains data on deforestation, and on population density for 
70 tropical countries. Deforestation is the average annual forest loss over the period 
1981-1990 expressed as a percentage of the total forested area. Population density 
is the number of people per thousands of hectares. Draw the scatter diagram 
between these two variables. Notice the positive relationship, and the outliers. 
 
Mean and other numerical summaries  
 
Sometimes, you would like to sum up the distribution of a variable, for instance the 
above histogram, by a few numbers. There are two traditional summaries. The mean 
indicates the value around which all the values taken by the variable are equally 

distributed. The formula is ∑
=

=
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measure of dispersion. Compute these two indicators on Koop\gdpp.xls. 
 
Now, we should think a little harder about the previous concepts. A histogram 
represents the distribution of a sample of observations of a random variable. The 
histogram is a reflection of the true distribution function of the random variable. The 
first feature of this function is the level around which it is located, for instance 300 
dollars or 30000 dollars. The concept of mean is a choice (among others) of a 
measure of this location. Sometimes this choice is good. Sometimes it is bad. I will 
later introduce the equation given by a linear regression. Such an equation will 
determine the mean (or expected value) of the explained or dependent variable, 
conditional on the knowledge of the explanatory variables. Thus, the concept of 
mean is central to econometrics, and we must understand its limits.  
 
There exist three measures of the location of the distribution of a variable: the mode, 
which is the value the most often observed, the median, which is the value such that 
the larger values are as many as the smaller values (the centre of probability) and the 
mean (the centre of gravity). 
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Some distributions are bimodal (for instance GDP per capita in the above example). 
In this case the mean is a bad summary. Very often a bimodal distribution suggests 
that the sample includes two kinds of individuals which should be considered 
separately, at least at the beginning of the analysis. For instance you can have such 
a bimodal distribution for the wages of a sample of workers. This may result from the 
fact that women are uniformly less paid than men.  
 
Some distributions are much skewed to the right, for instance the payment of 
overhead hours to a sample of workers over different weeks. Then, the mode is 
smaller than the median, which is smaller than the mean. 
 
When the distribution has the shape of a bell (so is unimodal) and is symmetric, the 
mode, the median and the mean are equal. In this case, it is justified to compute the 
mean. Then, the arithmetic mean computed on a sample of observations is a BLUE 
estimator of the expected value of the underlying distribution. Moreover, if the 
distribution is normal, the arithmetic mean is the maximum likelihood estimator of the 
expected value of the underlying distribution.  
 
As the median and the mean are equal, we could think about estimating their 
common value, not by the arithmetic mean of the sample, but by its empirical median. 
This would be a bad idea. In the case of a normal distribution and for a large sample, 
the standard deviation of the estimator median is 1.25 higher than the standard 
deviation of the estimator arithmetic mean. This means that the empirical median is a 
less precise estimator than the empirical mean. But for skewed distributions for which 
the mean has little meaning (for instance for wages), then the empirical median 
deserves to be computed and looked at.  
 
The concept of robust summary  
 
I will consider the GDP per capita of a sample of sub-Saharan African countries. The 
first sample includes 7 countries and concludes that in 1990 GDP per capita had a 
mean of $354, a median of $370 and a standard deviation of $196. The mean 
appears as an interesting summary of this distribution. Now, in this sample, I will 
substitute Botswana to Lesotho. Then, the mean becomes equal to $570, the median 
remains equal to $370 and the standard deviation becomes equal to $673. Thus, by 
changing only one individual into the sample, I did not change the median, but I 
changed the mean a lot. So, the mean is not a robust indicator of GDP per capita in 
African countries. But the median is a robust indicator. There is an economic and a 
political dimension in this discussion. If we fix to 500 dollars the level under which a 
country is considered to be poor, the mean indicates that African countries are above 
this poverty level. The median gives the opposite conclusion.  
 
The problem with the mean is that it minimises the mean square error (explain). So, 
an outlier has an excessive weigh in its determination.  
 
I consider the distribution of a random variable with mean μ  and variance (the 
square of the standard deviation) 2σ . These indexes are estimated by the empirical 
mean and variance Y  and 2s . However, besides μ  and 2σ  there exists two other 
important indices summarising the distribution of the random variable, and which are 
computed by using the operator expected value, denoted E:  
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The skewness is: 3
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Skewness is zero for a symmetric distribution (hence for a normal distribution). 
Kurtosis is equal to 3 for a normal distribution. When the kurtosis is larger than 3 we 
will say that the distribution has a fat tail. If you remember the formula of the normal 
distribution you can notice that the value of this distribution decreases as the square 
of the inverse of an exponential when we go further and further from the mean. This 
means that this decrease is very fast, and, for a sample with a reasonable size the 
probability of having one observation or more farther than 4 standard deviations from 
the mean, is practically zero.  
 
Variance, skewness and kurtosis are an arithmetic average, that is they take into 
account the value taken by the variable for each individual of the sample. Hence, an 
outlier, that is an observation with a value far from the mean, will strongly affect these 
three indices. If I want to remove the perverse influence of outliers on the numerical 
indices which sum up the distribution of the investigated variable, I can compute 
other indices, which do not take into account the values taken by this variable for 
each observation, but only the rank of this value in the sample. To do that, I will rank 
the observations in increasing order. The median is the observation, which divides 
the sample into two parts of equal size. The lower quartile LQ  is the median of the 
part of the sample, which is located below the true median. The upper quartile UQ  is 
the median of the part of the sample, which is located above the true median.  
 
These definitions must be refined to take into account that, for instance if the number 
of observations is even, there are two observations which apply to be the median. In 
this case we will take their mean as the median. The same problem occurs for 
quartiles.  
 
The range is the difference between the highest value and the lowest value observed 
in the sample. It is very sensitive to outliers. However, the inter-quartile range IQR is 
the difference between the upper quartile and the lower quartile LU QQ − . It is not 
sensitive to outliers.  
 
An outlier is a point that is located very far outside the IQR. For instance OY  can be 
considered as an outlier if: IQRQY LO 5.1−< , or IQRQY UO 5.1+>  
We can decrease or increase coefficient 1.5 to define near-outliers and far-outliers. 
 
How can we test if a variable is distributed according to a normal law? The first thing 
to test is the symmetry of the distribution that is the absence of skewness.  The most 
natural test is to compare if the difference between the mean and the median is large. 
The importance of this difference is evaluated relatively to the IQR. 
 
This difference may be large, not because the distribution is asymmetric, but because 
of a small number of outliers. So, it is interesting to measure if the value of the 
median is near the mean of the two quartiles. If this is the case, the central values of 
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the distribution are symmetrically distributed, and we can expect to have a symmetric 
distribution after having eliminated outliers. A robust index of skewness is the 
coefficient of Bewley: 

IQRMdQQb LUs /)2( −+=  
 
The second thing to test is kurtosis. For a normal distribution we have 35.1/IQR=ο . 
So, we can evaluate in a way robust to outliers, if the tail of the distribution is fat or 
thin by computing the difference between the empirical standard deviation and IQR 
divided by 1.35. When the tail of the distribution is fat, the empirical median becomes 
a better estimator of the mean than the empirical mean, which becomes very 
sensitive to outliers. We can build a 95% confidence interval of the mean as going 
from rank )2/)1((int nneger −+ to rank )2/)1((int nneger ++ . The results of these 
formulae must be rounded up to the nearer, lower integer and to the nearer, larger 
integer, respectively.  
 
The Jarque and Bera test is more sophisticated but cannot discriminate between the 
presence of outliers and a true asymmetry or true fat tails. I must compute 

6/33 naZ =  and 24/)3( 44 naZ −=  where ia  is the estimator of de iα . These 
two expressions follow standard normal distributions. Moreover, for big samples 
(1000), these two expressions become independent. Thus the sum of their squares 
follows a 2χ . This is the Jarque and Bera test. 
 
To remove true skewness from a series we can transform it:  

3Y  reduces extreme negative skewness 
2Y reduces negatives skewness. 

)log(Y reduces positive skewness. 
Y/1−  reduces extreme positive skewness. 

 
If the transformation is well made the mean and the median of the transformed series 
will approximately be equal. As this transformation preserves the order of the 
observations, the inverse transformation of the mean-median will give the median of 
the original series, but not its mean. In the same way the application of the inverse 
transformation to the confidence interval will give the confidence interval of the 
median of the original series. This does not matter very much, because in case of 
skewness, the mean does not have great economic meaning for the original variable.  
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CHAPTER 2. BIVARIATE ANALYSIS 

 
Correlation 
 
Let us come back to the file Mukherjee\forest.xls. The scatter diagram between 
deforestation and population density shows that these variables are related, but that 
the relationship is imperfect. If we draw a line in the middle of the scatter diagram, we 
can see that the points of the diagram are distributed around this line, but they are 
not on the line. The correlation between the two variables is a number, included 
between –1 and 1, which measures the intensity of their relationship. This intensity is 
very strong if the correlation is near 1 or –1. It is very weak if this intensity is near 0. 
More precisely the square of the correlation measures the proportion of the cross-
country variability in deforestation that matches up with the variance in population 
density. In our forest example, the correlation coefficient is equal to 0.66. As 

44.066.0 2 = , we can say that 44% of the cross-country variance in deforestation can 
be explained by the cross-country variance in population density. 
 
I will spend the rest of the paragraph thinking about what "explaining" means. 
Sometimes I will use the verb to cause instead of to explain. Both words will have the 
same meaning. This meaning will be the general meaning that people give to these 
words. Econometricians defined Granger-causality. This is quite a specific and 
technical concept, and I will not use it in this chapter. 
 
My first example will be about an exercise, which is given in Koop\hprice.xls. This file 
contains data relating to 546 houses in Windsor (Canada) in the summer of 1987. It 
contains the selling price (in Canadian dollars) along with many characteristics for 
each house. First, I can find a correlation of 0.54 between the price and the size of its 
lot. Thus, we can think that the size of the lot causes the price of the house, which is 
located on it. If, I have a house and if I buy some land besides it, its price will 
increase.  
 
Second, I find a correlation of 0.37 between the price of a house and the number of 
its bedrooms. Thus, I can think that a house with 4 bedrooms will have a higher price 
than a house with 3 bedrooms. Third, I find a correlation of 0.15 between the size of 
the lot and the number of bedrooms of a house. This number is surprisingly low. I 
would have thought that big houses often go with large lots. This relationship exists, 
but it is pretty weak. 
 
Now, let us think about the strong relationship between the price of a house and the 
size of its lot. One reason for this relationship is that a house with a big garden will 
have a higher price than a house without a garden. A second reason is that for a 
house, large lots are (weakly) connected with large numbers of bedrooms, and 
buyers are ready to pay for a large number of bedrooms. Thus, there is something 
spurious about the strong correlation of 0.54 found between price and size of the lot: 
if I buy some land besides my house, without adding one more bedroom, its price 
might increase by less than expected. This is the essence of multivariate regressions, 
which will be considered in next chapter. However, this is also the essence of the 
main difficulty, which is met by applied econometricians. 
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I will develop this last idea, which may be called direct against indirect causality, on 
another example. We can find a strong correlation between holding a university 
degree and pay. However, does that mean that education increases productivity and 
earning as the theory of the human capital assumes? The strong correlation could be 
because people with a university degree are intelligent, and that firms are ready to 
pay high wages to intelligent people. In microeconomics this is called the theory of 
screening, which is part of the theory of signalling. The theory of the human capital 
considers that there is a direct causality from education to pay. The theory of 
screening considers that there is an indirect causality from intelligence to pay, which 
passes through education. However, education by itself would be useless. 
Econometricians developed plenty of tricky methods to determine which, of these two 
theories is right. You can imagine that using intelligence tests to discriminate 
between these theories is controversial: such tests are sensitive to social or ethnic 
backgrounds and are not a wholly convincing measure of intelligence. However, you 
can build your econometrics, for instance, by comparing twins with different levels of 
education (one of them did not go to university because of a car accident…). 
 
The last example. If you take a sample of people, you will find a strong correlation 
between the number of cigarettes each person smokes per week, and on whether 
they have lung cancer. This result is normal, because smoking causes cancer. You 
will also find strong correlation between the number of cigarettes smoked every week 
and the amount of alcohol drunk in a typical week. This result is also normal and may 
be related to social attitude: there exist people who do not care much about nutrition 
and who like spending their evenings in pubs. These people drink, smoke and eat 
much fat. Of course, you will also find a strong correlation between drinking alcohol 
and having a lung cancer. However, this correlation is spurious: drinking does not 
cause lung cancer. Only, people who drink a lot use to smoke a lot, and smoking 
causes cancer. 
 
My conclusion is that correlation is a very helpful tool when you want to analyse a 
problem. However, correlation (and econometrics) is quite insufficient by itself. You 
still have to make a clever analysis of the problem, using common sense and a few 
well-thought tricks. Computers are not substitutes for human intelligence. 
 
Compute the correlation matrix of koop\cormat.xls. 
 
The correlation between variables X and Y is given by: 
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r . X and Y appear in a symmetric way in the formula: 

the correlation between X and Y is the same as the correlation between Y and X. 
This is another way to consider the ambiguous meaning of correlation: if it is high, 
does X cause Y or Y cause X? 
 
An introduction to simple regression 
 
In the example with hprice.xls, we drew a scatter diagram of the price of a house 
relatively to the size of the lot where it is located. We found a positive relationship 
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between these two variables. Let us call X the size of the lot and Y the price of the 
house. This relationship can be written: 

XY βα +=  
This is the equation of the regression line of Y relatively to X. X is the explanatory 
variable. Y is the explained or dependent variable. α  and β  are the coefficients or 
the parameters of the regression line. You remember the line the computer drew in 
the middle of the scatter diagram.  
 
Now, this relationship is only approximately true: the observations for each house are 
distributed around this line, but there are not on the line. Thus, the true equation is: 

εβα ++= XY  
ε  is called the error term. For some houses it is positive. For others it is negative. 
Sometimes it is large. Sometimes it is small. Thus, it represents the fact that the 
regression line is only an approximation of truth.  The error term sums up all the 
omitted variables: the number of rooms, the quality of the district, the ability of the 
seller to get a good price, etc. 
 
Now, the econometrician does not know the true values of parameters α  and β . He 
will use statistics to infer estimates of these values based on the observation of the 
data he has for 546 houses. Of course, these estimates will be a little wrong: they will 
differ from the true values α  and β . We will denote them: α̂  and β̂ . The true 
equation can be substituted by the estimated equation: 

uXY ++= βα ˆˆ  
There are two differences between the estimated and the true equations. First, the 
true values of parameters are substituted by their estimated values. Second, the error 
term ε  is substituted by the residual u . The residual cumulates all the 
approximations in the true equation, which are included in the error term ε , plus the 
error resulting from the approximation of the true values of the parameters by their 
estimates. 
 
How do econometricians estimate parameters? They want the estimated regression 
line well in the middle of the scatter diagram. Or, to be more precise, they want to 
minimise the values of the residuals of the equation. If, I call iu , the residual for 
house i, a way to measure the importance of the residuals is to compute the sum of 

the squared residuals: ∑
=

=
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i
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The most popular way to compute estimates α̂  and β̂  is to look for the values, which 
minimise the SSR. This method of estimation is called ordinary least square (OLS). It 

is easy to compute the formulae of α̂  and β̂ .  The result is
( )( )

( )∑

∑

=

=

−

−−
= N

i
i

i

N

i
i

XX

XXYY

1

2

1ˆ
r

β , 

XY βα ˆˆ −= .  
 



Jean-Pierre Laffargue Page 16 15/05/2014 

OLS estimation, and the minimisation of the SSR, is a very popular method in 
econometrics. However, it has a few disadvantages, which will be considered later 
on.  
 
In the example of hprice.xls, I found: 34136ˆ =α , and: 60.6ˆ =β . α̂  has no simple 
interpretation. The result for β̂  means that if you increase the size of your lot by 1 
square foot, the price of your house will increase by C$ 6.60. However, you must 
remember two things. First, the equation is an approximation. Secondly, the 
relationship between the size and price may be partly spurious and reflect, for 
instance, that large lots are often associated with a large number of rooms. 
 
Let us consider house i. The estimated equation explains its price by: 

iii uXY ++= βα ˆˆ . iY  is the true price of house i. If this price was on the estimated 

regression line it would be: ii XY βα ˆˆˆ += . iŶ  represents the fitted or predicted value of 
the true price of house i. Actually, this price can be decomposed between the fit and 
the residual of the equation: iii uYY += ˆ . E-Views computes the fit and the residual for 
each house. 
 

The total sum of the squares of the prices of houses is given by ( )
2

1
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i
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Actually, divided by 1−N , it represents the variance of this price. The regression sum 

of squares is defined by ( )
2
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variance of the fit of the price. We can prove that: SSRRSSTSS += . This means that 
the dispersion of prices is the sum of the dispersion of the fitted values of the 
equation and of the dispersion of the residuals. The precision of the equation or the 
quality of its fit are better if SSR is relatively small and RSS is relatively high. Thus, it 
is natural to measure the quality of the fit by the correlation coefficient TSSRSSR /2 = . 
This coefficient is included between 0 and 1. In the bivariate case investigated in this 
chapter, the correlation coefficient is equal to the correlation coefficient between the 
two variables.  
 
Until now I have considered a linear relationship between Y and X: XY βα += . There 
are many cases when Y and X are strongly related, but in a non-linear way. For 
instance 2XY βα += . In this case, we substitute 2X  to X  and we proceed exactly 
as before. Thus, we just transform variables in an adequate way to get a linear 
regression model with the transformed variables. 
 
The most popular transformation is the natural logarithm transformation: 

)ln()ln( XY βα += . To understand its meanings consider the relationship between 
households' consumption C and households' income Y. According to Keynes we 
should have: cYaC += . Keynes called c the marginal propensity to consume and 
considered it to be positive but smaller than 1. However, we can get a better fit with 
the regression equation: )ln()ln( YdbC += . d is the elasticity of consumption 
relatively to income: if income increases by 1%, consumption will increase by d%. 
Econometricians generally find d to be near to 1. This is a homogeneity constraint 
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which must be satisfied if you do not want to find queer differences between 
countries of different sizes. 
 
Most macroeconomic series have a geometric trend if they are not transformed. Their 
logarithm exhibits a linear trend (which is easier to analyse on a graph). The first 
difference of a series in logarithm is the growth rate of the original series. Thus, 
macroeconomists love to work with series in logarithms and with log-linear functions. 
However, a few series should not be transformed in this way, for instance, those 
which fluctuate around 0 (the logarithm of 0 is minus infinity). Examples of such 
series are interest rates, inflation rates and the rate of unemployment.  
 
We can think a little bit more on non-linearity and common sense with the data of 
mukherjee\maputo. Each morning the authorities of the harbour of Maputo declare 
that they have the number DEMD of positions of dockers to fill for the day. Of course, 
this number varies with the numbers of ships arrivals to the harbour.  The number of 
dockers hired for the day is RECD. Of course, this number cannot be larger than 
DEMD, and depends on the number of dockers who are ready to work this day. We 
have data on DEMD and RECD for 400 successive days. First, draw the histograms 
of the two series. Then, regress the first series on the second and a constant term. 
The result looks apparently econometrically good. Is not it economically silly? Draw 
the scatter diagram of both variables and think a little bit. Of course DEMDRECD ≤  
and the difference between both variables increases with DEMD.  
 
Statistical aspects of regressions 
 
I will consider again the relationship between the price of a house and the size of the 
lot where it is located. The true relationship is: εβα ++= XY  
The values of parameters α  and β  are unknown by the econometrician. However, 
the econometrician has observations on a sample of 546 houses, and he can 
estimate by OLS equation: 

uXY ++= βα ˆˆ  
α̂  and β̂  are called the estimates of α  and β . They depend on the precise set of 
546 observed houses. With another sample of 546 houses I would have got different 
estimates. As the sample of 546 houses is random, you could consider that the 
estimates are also random. However, most estimates computed on different samples 
of houses will be near the true values of the parameters. It is a good idea to consider 
an estimate as the realisation of a random variable, called an estimator. An estimator 
is function which links a random sample of houses to two values for parameters α  
and β . An estimate is the value taken by the estimator for a specific sample of 
houses. In the rest of this paragraph I will only consider parameter β . It is the most 
interesting parameter of the equation because it gives the sensitivity of the price of a 
house to the size of its lot. However, the main reason for doing this choice is that I do 
not want to complicate my notations and explanations by dealing with two parameters 
instead of one. 
 
When you have computed an estimate, you know that it will probably differ from the 
true value of the parameter. Thus, it is clever to choose a significance level, for 
instance 95%. Then, statistics allows us to compute an interval centred on β̂  such 
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that the true value β  has a probability of 95% to belong to this interval. This interval 
is called a confidence interval. The wider it is, the more imprecise the estimation is. 
For instance, newspapers publish such intervals with their political polls surveys: the 
conservative party will get between 32% and 36% votes in next election. 
 
Koop makes Monte Carlo simulations pp. 58-61. He takes the true equation and he 
fixes the values of the parameters to 0=α , 1=β . Thus, the true equation he will 
simulate is ε+= XY . Then he chooses a sample of values for X, he makes random 
drawings for the error term ε  (in E-Views you have a command which generates 
random numbers), he computes Y and he draws the scatter diagram of X and Y. 
An econometrician would observe the scatter diagram, but would not know the true 
values of the parameters. Instead he would try to infer these values, that is to 
compute estimates, from the scatter diagram. Koop draws 4 scatter diagrams and we 
can notice on them: 
1. More observations will increase the accuracy of the estimation.  
2. Smaller errors (i.e. a smaller variance of ε ) will increase the accuracy of the 

estimation. 
3. A larger spread of values of X (that is a larger variance of the explanatory 

variable) will increase the accuracy of the estimation. This is normal: if all the lots 
had a size between 5000 square feet and 6000 square feet, estimating the effect 
of size on price would be difficult.  

I advise you to look at the 4 scatter diagrams drawn by Koop. 
 
Econometric theory shows that the confidence interval of β  is )ˆ,ˆ( bb stst αα ββ +− . bs  
is the standard deviation of the estimator of β . We saw that this estimator is a 
random variable (it depends on randomly chosen houses), and its standard deviation 
measures the accuracy of the estimation. Econometric theory gives the formula: 
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that is the variability of the explanatory variable increases. Thus, this formula is 
consistent with the four scatter diagrams drawn by Koop.  
 
α  is the significance level, for instance 95%. If the error term is normally distributed, 
αt  is a value, which can be found in a Student statistical table. It depends on α , of 

course, but also on the number of observations N. However except for very low 
values of N, αt  does not change much with N, and its value can be found in a normal 
distribution statistical table. Nowadays, nobody looks at statistical tables: the 
computer looks at them instead. However, 20 years ago students had to learn how to 
use these tables, which was a bit cumbersome. 



Jean-Pierre Laffargue Page 19 15/05/2014 

What happens if the error term is not normally distributed, that is if its distribution 
includes a fat tail or if there are outliers. Econometric theory proves that the previous 
results are still true if the number of observation is large. however, large has 
ambiguous meaning: does large mean 100 observations, 500 or 5000? The answer 
to this question will make a big difference for the practitioner.  
Fat tails are bad3, but outliers are very bad. This explains why I spent some time on 
the concept of robustness in chapter 1. I will come back to this concept a bit later. 
 
In this paragraph, I have dealt until now with the estimations of parameters. Now, I 
will consider testing. Does the price of a house really depend on the size of the lot 
where it is located? If you find the question silly, does deforestation is really sensitive 
to population density?  After all it could be only sensitive to the greed of foreign 
capitalists and the locals could cherish their forests. Or in a more general way is Y 
sensitive to movements of X, or does β  differ or not from 0. 
 
I will call the hypothesis: 0=β  the null hypothesis. If it is true, the explanatory 
variable has no effect on the explained variable. β ≠ 0  is the alternative hypothesis. If 
it is true, changes in the explanatory variable affect the dependent variable. 
I will test the null hypothesis against the alternative hypothesis. Statisticians are 
pessimistic people. Either, the evidence given by the observed data contradicts the 
null hypothesis, and the null hypothesis is rejected. Or, the evidence given by the 
observed data does not contradict the null hypothesis, and the null hypothesis is not 
rejected. This conclusion is different from "the null hypothesis is accepted". The null 
hypothesis could be completely wrong, but the observations could be insufficiently 
informative to discover that.  
 
To process a test you need to compute an appropriate test statistic. For our problem, 

this statistics is called a t-statistics, or t-ratio, and is defined as t
sb

=
$β

.  If t is small, I 

will not reject the null hypothesis, if it is large, I will reject the null hypothesis. Now, 
what do large and small mean? 
 
Econometric theory proves that if the null hypothesis is true (and if the error term is 
normally distributed or if the number of observations is large), t is distributed as a 
Student distribution (or as a normal distribution if the number of observations is 
large). Student and normal distributions are implemented in econometric software. 
Thus, assume that the value of the statistics is 2.36. If the null hypothesis is true that 
is if: β = 0 , the computer can tell us that the probability for having a statistic equal or 
larger than 2.36 is 1.1% (to be fairly honest I did not check this last number because I 
have no statistical table with me). 1.1% is called the P-value of the test. 1.1% is a low 
probability. If the null hypothesis was true, it would have been very unlikely to get a 
statistic as high as 2.36. Thus, I will reject the null hypothesis.  
 
A rule of thumb is to reject the null hypothesis when the P-value is smaller than 5%, 
and not to reject it when it is larger than 5%. 5% is called the significance level of the 
test. For some problems you could prefer choosing another significance level, for 

                                                           
3 Actually, if the tails of the distribution of the error term are a little too fat, its standard deviation, and even its 
mean are not defined, and usual econometrics becomes invalid.  
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instance 10%  or 1%. 
 
We can be a little more precise. We saw above that a larger number of observations 
will increase the accuracy of the estimation. Thus, if the null hypothesis is a little 
wrong, that is if the explanatory variable has a weak effect on the explained variable, 
the P-value of the test will be high if the size of the sample is small, but very low if 
this size is large. Thus, it will be wise to take a significance level, which is high for a 
small sample size (10%) and low for a large sample size (1%)4. 
 
A rule of thumb is to reject the null hypothesis when the P-value is smaller than 5%, 
and not to reject it when it is larger than 5%. 5% is called the significance level of the 
test. For some problems you could prefer choosing another significance level, for 
instance 10% or 1%. 
 
If the number of observations is large enough, 1.96 is associated with a P-value of 
5%. Then, you will reject the null hypothesis β = 0  if the t statistic is larger than 1.96. 
This value increases when the number of observation decreases. For instance, with 
20 observations, 2.09 must be substituted for 1.96. The difference between these two 
numbers is tiny. However, you must remember that the Student test rests upon the 
assumption that the error term follows a normal law (or otherwise that the number of 
observations is large). 
 
If you are a bit imaginative, you have already noticed, that you would have the same 
test if you computed the confidence interval associated with a significance level of 
95% (which is 100%-5%), and checked if 0 belonged to this interval. If 0 belongs to 
this interval, you will not reject the null hypothesis. Otherwise you will reject it. 
 
If you are a little more than a bit imaginative, you will have noticed that testing 0=β , 
is testing if the explanatory variable has an influence on the dependent variable, i.e. if 
the square of the correlation coefficient of the regression R 2  is equal or not to 0.  
 
You could like testing not the null hypothesis: β = 0 , but the null hypothesis: β = c , 
where c is a nonzero number which you selected. The test of this new null hypothesis 

proceeds as before, except that you must use the new statistics: t
c

sb
=

−$β
, instead 

of: t
sb

=
$β

. This is a form of the Frisch-Waugh theorem. This theorem proves that if 

you estimate by OLS equation: εβα ++= XY , and equation; 

Y cX c X− = + − +α β ε( ) , if you denote by: $α  and $β  the estimates of the first 

equation, the estimates of the second equation will be: $α  and $β − c . Thus, testing if 
the coefficient of the explanatory variable is equal to c in the first equation is 
equivalent to testing that the coefficient of the explanatory variable is equal to 0 in the 
second equation. Then, we can apply the test developed before to the second 
equation, and we get the above formula for the test statistics. 
 

                                                           
4 To make this sentence clearer we would need to introduce the concepts of type II error and of power of a test.  
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Robustness of regressions  
 
I will consider the true model: εβα ++= XY  
and its estimation by OLS: uXY ++= βα ˆˆ  
 
For observation i , residual ui  is an estimate of the error term iε .  A basic 
assumption for OLS is that the standard deviation of the error term is the same for all 

observations. Its estimate is s
SSR

N
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− 2
.  However, the standard deviation of 

residuals changes with observations. For observation i  it is ii hsuse −= 1)( , with: 
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ih  is called the hat statistic. The more distant iX  is from its mean, the higher ih  is. 
 
In a regression, an outlier is an observation with a large residual, compared to the 
residual of most other observations. An observation with high leverage is an 
observation with an explanatory variable, which takes a value very different from its 
mean, that is an observation with a high hat statistic. An influential observation is 
such that if you remove it, the estimate of β  will change a lot. These concepts are 
related to one another, but they are different. Loosely speaking, an observation with 
high leverage has the potential of being influential. If this observation is an outlier this 
potential is realised and the observation is influential. So, to be influential an 
observation must be simultaneously with high leverage and an outlier. When an 
observation is influential the results of the estimation of the regression depend at a 
strong extent on this observation. So, they become fragile: you would like the results 
of your estimation to be almost insensitive to the the deletion of any arbitrary set of a 
small number of observations    
 
To identify an outlier we must compute the studentized residuals. To do that, we will 
divide each residual by its standard deviation. However, as the standard deviation of 
the error term is sensitive to outliers, in the formula giving the standard deviation of 
residual i , we will use an estimator of the standard deviation of the error term, which 
does not use this residual, let be is  instead of s . Then, we get the expression: 

t
u

s hi
i

i i

=
−1

 

There exists a table for this statistics, so we can test if ui  significantly differs from 0. 
The critical values of this table are higher than for a Student table. It is easy to 
understand why. Let us assume that I am interested by the different problem: is 
observation i  an aberration in the sample? Then, I will estimate the equation after 
having added a new explanatory variable, which is a dummy variable with a value 
equal to 0 except for observation i  where it is equal to 1. Then, I will compute the 
Student-t statistics of the coefficient of the dummy variable and I can notice that it is 
exactly equal to the studentized residual for this observation: ti . I can compare this 
statistic to the critical value of a Student table, which is of the order of 1.96. The null 
hypothesis is that observation i  is not an outlier. However, in this paragraph the 
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problem is different. I wonder if among the N  observations there exist one or several 
outliers. My null hypothesis is that there exist no outlier. To test this hypothesis, I will 
not select an observation i  and check if ti  is above some critical value. I must check 
if )max( it  is above some critical value, or if all it  are under this critical value. To 
compare N  it  to a common value is a much stricter requirement than to compare 
only one of them to this value. Then, a statistical analysis of the set of all the 
studentized residuals must use a critical value higher than 1.96.  
 
Actually, it is not very important to bother with an exotic table. I can simply compute 
the statistics for all the residuals and investigate if it does not sometimes take 
excessive values. I also can, like in last chapter, compare the median, the mean and 
the IQR, and look for outliers in the distribution of the it  
 
The leverage of an observation is measured by its hat statistics. If XX i = , i.e. if the 
observation is located in the middle of the sample, then it has no leverage and 

Nhi /1= . If the observation is far from its mean, ih  increases and tends to 1. It would 
be a good idea to compute the maximum of the hat statistics. If it is less than 0.2 we 
have no reason to worry. If it is larger than 0.5, the leverage is too high.  
 
An influential observation is identified by its DFBETA statistics. This statistics is equal 

to DFBETA
sei

i

i

=
−$ $

( $)
β β

β
, where $βi  and se i( $)β  are the estimates of β  and the standard 

deviation of this estimate after having removed observation i . Usually, this statistics 

is compared to N/2 , or to N/3 . Observations with DFBETA higher than these 
limits are worrisome. I also can use the robust methods of last chapter to look for 
outliers in the series of the DFBETA. 
 
It is possible that no observation is influential, but that a grape of 2 or 3 successive 
observations is influential. We can check that by applying the same formula to a 
grape of such observations.  
 
Tutorial: the capital asset pricing model (CAPM) (Berndt, chapter 2) 
 
I will consider a stock denoted j . Its price at current time 0 is p j0 . Its expected price 
at future time 1 will be p j1 . As p j1  is an expectation, I can consider it a random 
variable. For instance you will expect that the price of the stock will belong to interval 
($29, $29.10) with probability 0.07, to interval ($29.10, $29.20) with probability 0.15, 
etc.  d j  represents the dividends which will be paid at time 1. Then I will define the 

expected return of the stock over the period as r
p p d

pj
j j j

j
=

− +1 0

0
. rj  is a random 

variable. 
 
If expectations are given, having available a model which can explain the values 
taken by rj , is equivalent to having a model which can explain the current value of 
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the price of a stock p j0 . Finance theory prefers working with rates of return than with 
prices. I will follow this practice. 
 
I will denote by rf  the risk free interest rate (for instance the rate of return of 30-days 
Treasury bills) and by rm  the market rate of return. rm  represents the rate of return of 
all the risky assets taken together which are available in the economy. It is usually 
computed as a financial market index. The CAPM will be a better representation of 
reality if this index is very wide. This index is called the market rate of return.  
 
The CAPM proves the following equation: 
Er r Er rj f j m f− = −β ( )  
At date 0, rj  and rm  are random variables. Erj  and Erm  represent their expected or 
mean values (that is the expected or mean value of the price of the stock and the 
financial index in one period time). Er rj f−  can be interpreted as a risk premium: the 
expected rate of return of your stock is, for example, 6 percentage points above the 
risk free interest rate. Er rm f−  can be interpreted as the risk premium on the market 
portfolio. If we take this portfolio as a reference, associated to a risk equal to 1, 
Er rm f−  can be interpreted as the price of risk. β j  is the beta of stock j , or its risk. 
Finance theory proves that it is equal to: 
β σ σj jm m= / 2    where σ jm  is the covariance between rj  and rm , and σm

2  is the 
variance of rm . 
 
Now, let us consider the regression model: 
r r r rj f j j m f j− = + − +α β ε( ) , 
If we take the expectation of this equation we get the CAPM equation (notice that in a 
regression E jε = 0 , which means that as many errors are by excess as by default). 
According to the CAPM: α j = 0 . Moreover, we can see that: 

Var r Var r Varj j m j( ) ( ) ( )= +β ε2  
 
This formula uses a property of the regression model, which is that the error term and 
the explanatory variable are not correlated. The CAPM equation shows that the price 
of stock j (proportional to the inverse of rj ) only prices the beta of this stock. Thus, in 
the above formula, we say that Var rj( )  is the total risk of the stock. It is split between 
a systematic risk, which cannot be removed by clever diversification and which has to 
be priced β j mVar r2 ( ) , and a unsystematic risk, which disappears in a well diversified 
portfolio and which must have a zero price Var j( )ε . 
 
Now, we can estimate the regression equation  
r r r r uj f j j m f j− = + − +$ $ ( )α β  
This estimation can be made, for instance, by using monthly data over a 5 years 
period. The formulae given above show that $ $ / $β σ σj jm m= 2 . The hat on the left-hand 
side represents estimates of the covariance and the variance.  
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It is easy to test if α j = 0  or if $β j  stays constant over time (this by using a Chow test 
which was not presented in this lecture, but which is implemented in E-Views). 
 
The square of the correlation coefficient R 2 can be interpreted as an estimate of the 
proportion of the total risk of the stock, which is systematic. 1 2− R  is the proportion of 
the total risk,  which is unsystematic. 
 
The arbitrage-pricing model (APM) of Stephen Ross was built on foundations very 
different from those of the CAPM. However, its final equation is the same as the 
CAPM equation, except that, besides of the measure of the price of risk, other 
explanatory variables appear in the final equation. Thus it is easy to test the CAPM 
against the APM, by testing if the coefficients of these new variables differ 
significantly or not from 0. If there is only one more variable, we can use the Student 
test introduced before. If there are more than 1 supplementary variable, we must test 
for the simultaneous nullity of 2 or more coefficients. We use a generalisation of the 
Student test, which is called a Fisher test and which is implemented in E-Views 
(under the more general name of Wald test).   
 
The exercises are given pp. 41 to 54. Exercises 1, 2, 3 and 4 are directly related to 
this chapter. Exercises 7 and 9 are related to next chapter.  Exercises 6, 8 and 10 
use notions which were not introduced in this chapter. Exercise 5 is outside our 
subject. 
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CHAPTER 3. MULTIVARIATE ANALYSIS 

 
Multiple regressions 
 
Multiple regressions extend simple regressions to the case when there are many 
explanatory variables. Most of the intuition and statistical techniques of multiple 
regressions are very similar to those of simple regressions. 
 
X1 :  The lot size of the property (in square feet); 
X 2 : The number of bedrooms; 
X 3 : The number of bathrooms; 
X 4 : The number of storeys (excluding the basement). 
 
The true model is: Y X X X X= + + + + +α β β β β ε1 1 2 2 3 3 4 4  
 
The econometrician does not know the values of the parameters in the true model. 
He will try to estimate it by using the 546 observations, and he will get the estimated 
model: 
Y X X X X u= + + + + +$ $ $ $ $α β β β β1 1 2 2 3 3 4 4  
He will compute the estimates of the parameters by minimising the sum of squared 
residuals: 

( )SSR u Y X X X Xi i i i i
i

N

i

N

= = − − − − −
==
∑∑ 2

1 1 2 2 3 13 4 4

2

11

$ $ $ $ $α β β β β  

The formulae giving the estimated values of the parameters, α̂ , $β1 , etc. are a bit 
cumbersome. However, the computer can easily compute them. The correlation 
coefficient of the regression, R 2 , is still a measure of the fit. It must be interpreted as 
a measure of the explanatory power of the explanatory variables together. 
Confidence intervals for each parameter can be computed as in chapter 2. Testing if 
any parameter is equal to 0 or to a value c can be done as in last chapter. 
 
In chapter 2 only the first explanatory variable, the size of the lot, was taken into 
account. Its estimated coefficient β̂  was equal to 6.6. In this chapter, three more 
explanatory variables have been added. The estimated coefficient of the size of the 
lot 1β̂  is now equal to 5.4, which is a lower value. 
 
This last estimation means that if you own a house, if you keep unchanged the 
number of bedrooms, the number of bathrooms and the number of storeys, and if you 
buy one square foot of garden to your neighbour, the price of your house will 
increase by Ca $5.4.  
 
In chapter 2, I concluded that this price should increase by Ca $6.6 and I was wrong. 
The problem is that big lots, many bedrooms, many bathrooms and many storeys go 
together. Or, in technical terms, the 4 explanatory variables are positively correlated 
to one another.  Thus, in chapter 2 where 3 important variables were omitted from the 
regression, the size of the lot was also an index of the number of bedrooms, the 
number of bathrooms and the number of storeys of the houses of the sample. The 
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coefficient 6.6 represented for a part equal to 5.4, the fact that a big garden increases 
the price of a house. However, for a part equal to: 6.6-5.4=1.2, big gardens are 
indices for large numbers of bedrooms, bathrooms and storeys, variables which were 
omitted from the equation. In econometric language 6.6 is a biased estimation of the 
effect of the size of the lot on the price of a house. 5.4 is an unbiased estimation.  Of 
course, both estimations differ from the unknown true value. However, there is 
something like a systematic error in the estimated value 6.6. This systematic error is 
missing in the estimate 5.4, which is much more reliable. 
 
Thus, if you consider buying a piece of land from your neighbour, you should 
consider that the price of your house will increase by $5.4 per square foot bought, 
and not by $6.6. Bad econometrics can have serious practical consequences. 
 
Some important variables are still missing from the equation of this chapter. If they 
are positively correlated with the size of the lot, their absence increases the 
coefficient of this variable (the "true value" of it should be less than 5.4). If they are 
negatively correlated with the size of the lot (for instance the proximity of the centre of 
the city is negatively correlated with the size of the lot), their absence should 
decrease the value of the estimated coefficient. We cannot include all the required 
explanatory variables for two reasons. First, because many of them are difficult to 
measure, or are simply omitted in surveys. Second, because your estimation 
becomes less precise (that is the standard deviations of the estimated parameters 
becomes higher) when the number of explanatory variables increases. 
 
The previous problem is the most serious problem econometricians have to deal with. 
There is no magical recipe. A good econometrician must, not only know how to use 
the computer, but he still must be a good analyst (of the housing market for instance), 
able to mix his technical ability with common sense and the experience of experts (for 
instance sales agents). 
 
Another problem arises if some or all the explanatory variables are highly correlated 
with one another. Let us imagine that we work on a survey of households. It is 
reasonable to consider that consumption is related to income and wealth. However, 
income and wealth are strongly correlated to each other. Thus, when you run your 
regression, you will be unable to identify the precise effect of income, compared to 
wealth, on consumption. Technically, the manifestation of this impossibility will be 
very large confidence intervals for the estimated coefficients of both variables and 
very high P-values for tests of nullity of these coefficients. These two problems will 
disappear if you omit one of the two explanatory variables, for instance wealth. The 
confidence interval of the coefficient of income will be small, and the P-value for the 
test of the nullity of this coefficient will be very small. However, the estimation of this 
coefficient will be biased, because it will cumulate the direct effect of income on 
consumption, and the indirect effect of wealth for which income acts as an index.  
 
Tutorial: Costs, learning curves and scales economies (Berndt, chapter 3) 
 
Cost function 
 
The econometrics of production very much uses the concept of the cost function. 
Consider a firm, or a plant, with a production function: );,...,( 1 Axxfy n= . y  
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represents the output of the firm, nxx ,..,1  are the inputs and A  represents the state of 
technical knowledge available at the firm.  
 
Let us double all the quantities of inputs used by the firm: ii xx 2→ , with ni ,..1= . If: 

yy 8.1→ , I will say that the firm has decreasing returns to scale. If: yy 2→  I will say 
that the firm has constant returns to scales. If: yy 2.2→  I will say that the firm has 
increasing returns to scales. 1.8-2=-0.2 or 2.2-2=0.2 represent the economies of 
scale. 
 
I will denote the price of input i as ip  and I will consider it to be fixed and exogenous 
(the assumption of perfect competition on the inputs markets). The total production 

cost of the firm is ∑
=

=
n

i
ii xpC

1
. For any given level of output y (determined outside the 

models considered in this tutorial) the firm determines the quantities of the various 
inputs it will use to minimise its total production under the constraint of its production 
function. Thus, I define the Lagrangian of this optimisation problem: 

)];,..,([ 1
1

Axxfyxp n

n

i
ii −+∑

=

λ , where λ  is the Lagrange multiplier. Then, I compute the 

partial derivatives of this expression, relatively to all the ix , and I put them equal to 0. 
I get: 

);,..,(
);,..,(

1

1

Axxf
Axxf

p
p

nn

ni

n

i = , for: 1,..1 −= ni . 

 
I can use these n-1 first order conditions with the production function to compute the 
optimal quantities of each input in function of the quantity of output and of the n 
prices of inputs. Then, I can substitute these expressions in the definition of the total 
cost and I get: );,,..,( 1 AyppgC n=  
 
This expression is called the cost function of the firm. Unit cost or average cost is 
defined as yCc /= . 
 
Frequently, c is a decreasing function of y when y is small (increasing returns to 
scale) and an increasing function of y when y is large (decreasing returns to scale). 
 
Learning curve 
 
The average production cost of an output decreases with the cumulated past 
production of this output. This empirical result is caused by the fact that the more a 
firm has produced, the better it knows how to produce in an efficient way. This result 
can be formalised by equation:  

)exp(1 ttt ncc εα= , 0<α  

tc  represents the average production cost in period t, tn  represents past cumulated 
production (not including period t), tε  is an error term. 
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This equation can be given the following interpretation. Each time tn  doubles tc  will 
decline to proportion d of its previous level, with: α2=d . d  is called the learning 
curve slope. Berndt indicates page 80 that in empirical research many products have 
a learning curve slope of 0.80 to 0.84. 
 
Cobb-Douglas production function 
 
I will try to be more specific. I will start by the case when there is no learning. A Cobb-
Douglas production function can be written: 

321
321
ααα xxAxy =  

The returns to scale are: 321 ααα ++=r  
 
If we apply the procedure of computation presented above, we can prove that the 
cost function is: 

)log()/()log()/()log()/()log()/1()log()log( 332211 prprpryrkC ααα ++++= ,  
with: rArk /1

321 ][ 321 −= ααα ααα  
 
When we estimate this cost function we must not forget that its parameters are 
related by constraint: 321 ααα ++=r . Thus, to make the estimation easier I will use 
this equation to eliminate parameter 3α  from the cost function. I will get: 

)]log())[log(/()]log())[log(/()log()/1()log()log()log( 3223113 pprppryrkpC −+−++=− αα
 
To estimate this equation I will define the new variables: 

)log()log(*)log( 3pCC −= , )log()log()log( 31
*
1 ppp −= , )log()log()log( 32

*
2 ppp −= , 

and the new parameters: 
)log(0 k=β , ry /1=β , r/11 αβ = , r/22 αβ =  

Thus, the cost function can be re-written as: 
)log()log()log(*)log( *

22
*
110 ppyC y ββββ +++=  

 
This equation can easily be estimated by OLS. Then we can compute the estimates 
of the old parameters from the estimates of the new parameters by using formulae: 

yββα /11 = , yββα /22 = , yβββα /)1( 213 −−=  
 
To introduce learning in the cost function I will simply assume that learning increases 
the state of knowledge available to the firm: 

α−= tt nA  
 
I will define the new parameter: rrk /1

321 ][' 321 −= ααα ααα . The cost function becomes: 

)log()/()log()/()log()/()log()/1()log()/(
)'log()log(

332211 ttttt

t

prprpryrnr
kC

αααα +++++
=

 

 
A practical difficulty with this equation is that the cost of the firm is measured in 
current dollars, and that the econometrician must know the prices of inputs. Very 
often these prices are unknown. Berndt suggests a solution to this problem (a not 
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very good solution in my opinion). Let us denote the GNP price deflator by tGNPD . 
This price is an average of all the prices prevailing in the economy. If we are lucky we 
will have approximately the relationship: 

)log()/()log()/()log()/()log( 332211 tttt prprprGNPD ααα ++=  
 
If we subtract this equation from the previous cost function we get: 

)log()/1()log()/()'log()log()log()log( '
ttttt yrnrkGNPDCC ++=−= α  

ttt GNPDCC /' =  represents production costs in constant dollars.  If I denote unit costs 
in constant dollars as: ttt yCc /'= , the previous equation can be re-written: 

)log(]/)1[()log()/()'log()log( ttt yrrnrkc −++= α  
 
This equation can easily be estimated by OLS. Then, we can immediately deduce the 
learning curve slope and the returns to scale. We can also test if these returns are 
constant or not (null hypothesis r=1).  
 
In pages 76-78 of his book Berndt gives a very clear discussion of the omitted 
variable bias. In page 83 you can read: "The econometric literature on estimated 
returns to scale in the electrical industry in the United States appears to suggest that 
substantial economies of scale have been available, that such economies may have 
been largely exploited by the early 1970s, and that today the bulk of electricity 
generation comes from firms generating electricity at the bottom of their average cost 
curves". 
 
The exercises are given pages 83 to 95. Exercises 1, 2, 4, 5, 6 are excellent.   
Exercise 3 is very interesting but academic. Exercise 7, 8, 9 and 10 are more 
advanced than this course. 
 
Partial correlations 
 
Let us start with the data in Mukhrjee \Khrishnaj.wk1. We want to investigate if the 
demand of industrialised consumption goods ln(M) decreases in India when the price 
of cereals increases, because of an income effect, which dominates substitution 
effect. The explanatory variables are the logarithm of real income ln(R) and the 
relative price of cereal ln(p). We can regress the explained variable relatively to the 
two explanatory variables and a constant term: 

upRM +++= )ln(ˆ)ln(ˆˆ)ln( 21 ββα  
 
The Frisch-Waugh theorem establishes the following result. 
 
First, let us regress ln(M) on a constant term and on ln(R). We get: 

νγγ ++= )ln(ˆˆ)ln( 10 RM  
Second, let us regress ln(p) on a constant term and on ln(R). We get: 

ηδδ ++= )ln(ˆ)ln( 10 Rp
s

  
ν  and η  represent respectively the parts of ln(M) and ln(p), which are left 
unexplained after having taking care of the information brought on these variables by 
ln( )R . 
Now, if we run a regression of ν  on η  (without a constant term), we will get: 
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u+= ηβν 2
ˆ  

 
Thus, there are two ways to compute the estimate $β2  and the residual u : 
Directly, by running the first multivariate regression. 
Indirectly, by running the three next univariate regressions. 
 
An advantage of the second method is that we can apply to the three bivariate 
equations it includes the methods of analysis of chapter 2. These methods can be 
helpful, for instance to look for outliers, non-linearities, etc. Scatter plots can be very 
instructive.  
 
The correlation coefficient of the last equation is called the partial correlation 
coefficient between the logarithm of manufactured consumption and the logarithm of 
price. It is a good measure of the supplementary information brought by the logarithm 
of price to the logarithm of manufactured consumption, after having taken care of the 
information brought by the logarithm of income. Thus, if you consider adding an 
explanatory variable to an equation, partial correlation is a good measure of the new 
information brought by this variable. The significance of the new explanatory variable 
can be tested by a Student test on its coefficient in the expanded equation. 
 
Fragility analysis 
 
We will use the data in Mukherjee\fertility.wk1 . We want to explain the variability of 
the fertility rate of women over a large number of countries by 4 explanatory 
variables. No fully convincing theory exists which could help us to choose a 
specification of the equation. Thus, we run 15 regressions: all the possible 
combinations of explanatory variables, 4 regressions, with only one explanatory 
variable, 6 regressions with 2 explanatory variables, 4 regressions with 3 explanatory 
variables, 1 regression with the 4 explanatory variables. 
 
In all the regressions where it appears, the coefficient of the variable family planning 
takes about the same value, which significantly differs from 0. This robustness of the 
result concerning this variable suggests that we must put it in the equation. Thus, we 
discard the 7 equations where it does not appear. 
 
We use the same method on another variable for the 8 equations left. Progressively, 
we discard equations. 
 
Finally, we are left with two equations between which we cannot choose on 
econometric grounds. These equations differ by the fact that infant mortality appears 
in the first and not in the second, and the alphabetisation rate of women appears in 
the second and not in the first. However, common sense suggests that, when women 
become more educated, their fertility rate decreases (for instance because they can 
get a job, or because they become more independent from their husband). Moreover, 
their children have a higher probability to survive (because educated mothers are 
abler to follow basic rules of hygiene).  Thus, we could choose to keep the second 
equation. Another argument would be that when a child dies, his parents would want 
to have another child to take the place he left.  Thus, we could choose to keep the 
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first equation. Thus, we face an economic problem, which is well discussed in the 
book by Mukherjee and alii. 
 
Regressions with dummy variables 
 
Some of the explanatory variables can be qualitative variables, of the kind we met in 
chapter 1. This does not change anything for the theory of multivariate regressions. 
However, the economic interpretation of the results can be a bit tricky. I will explain 
how on the example given in Koop\hprice.xls. The explained variable is still the price 
of a house Y. I have data on 546 houses. I will use two former explained variables: 
X1  the size of the lot, and X 2  the number of bedrooms. I will not use the 2 other 
explanatory variables introduced before, just not to make my presentation too 
cumbersome.  I will add two qualitative variables: having or not having a driveway 
having or not having a recreation road. 
 
I will denote the first variable as D1 . This variable can take values 1 (if the house has 
a driveway) or 0 (if it does not). I will denote the second variable as D2 . This variable 
can also take values 1 (if the house has a recreation room) or 0 (if it does not). Such 
variables, which can take on only two values, 0 or 1, are called dummy variables. 
Now, I will run the regression of Y on the four explanatory variables and a constant. I 
will get: 
 
$ . .Y D D X X= − + + + +2736 12598 10969 5197 105621 2 1 2  

 
That means that if the house has no driveway ( D1 0= ) and no recreation room 
( D2 0= ), its value will be $ . .Y X X= − + +2736 5197 105621 2 . 
If the house has a driveway, its value will be, holding all other variables constant (or 
ceteris paribus), $12598 more. If the house has a recreation room, its value will be, 
ceteris paribus, $10969 more. If the house has a driveway and a recreation room, its 
value will be, ceteris paribus, 12598+10969 = $23567 more. 
 
What is peculiar in the above result is that the marginal effect of the size of the lot, or 
the number of bedrooms, is the same for the four kinds of houses. Increasing the size 
of the garden by 1 square foot will increase the price of the house by $5.197 whether 
the house has or not a driveway or a recreation room. This assumption may be 
justified or not. To understand this point I will give another example. 
 
I am still interested in explaining the price of a house Y. But now, I will use only two 
explanatory variables: D = 1 if the house has air conditioning, 0 if not; X = lot size.  
However, I will consider that increasing the size of the lot can affect the price of the 
house, which will differ if the house has or does not have air conditioning. For that I 
will introduce a third variable Z DX= . I run the regression and I get 
 
$ . .Y D X DX= + + +35684 7613 502 2 25  

 
If the size of the lot is increased by 1 squared foot, the price of the house will 
increase by $5.02 if the house has no air conditioning, and by 5.02+2.25=$7.27 if the 
house has air conditioning. We can check, with a Student test that the P-value of the 
coefficient of DX is 0.02, so that this coefficient is significantly different from 0. Thus, 
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the difference in the marginal effect of the size of the lot on price for the two kinds of 
houses is significant.   
 
How more will be priced a house with air conditioning? In the case of interacting 
dummy and non-dummy variables, we do not get as simple results as before. A 
house with air conditioning will be priced $ 7613+5.02X. The premium of having air 
conditioning is no more constant; it increases with the size of the lot. 
 
Thus, you can see that dummy explanatory variables do not change the 
econometrics. In this paragraph we have just introduced a few ideas on the best way 
to give good economic interpretation for the result. However, dealing with an 
explained or dependent dummy variable is a much more difficult problem. In this case 
the econometrics of OLS does not work any more and we must use another 
econometrics, called probit and logit models. Actually, the basis of this new 
econometrics is not very difficult. However, it is different and will not be investigated 
in these lectures. E-Views has these two new methods implemented. 
 
Tutorial:  Analysing determinants of wages and measuring wage discrimination 
(Berndt, chapter 5) 
 
Theory.  
 
Education has a cost. This cost takes the form of foregone earnings, as well as direct 
expenses such as tuition. However, education will increase productivity in the 
workplace, and thus will be gratified by higher earnings over work life. Thus, 
education includes all the ingredients of an investment. 
The length of time over which you will benefit from the return of education will be 
higher if you study when you are young than if you study when you are old. 
Moreover, as earnings increase with experience, foregone earnings will be higher for 
an old student than for a young student. These stylised facts can explain why most 
people attend university when they are young. 
 
Learning is a tough task. However, if you are clever and smart, this task will be easier 
for you5. Thus, there should be a high positive correlation between education and 
abilities.  When you find in your regressions that a higher number of years of 
schooling goes with higher wages, you will face the difficulty of discovering if firms 
pay for education or for abilities. 
 
On-the-job training is also related to wages. Here things become a bit subtle. General 
training increases the productivity of the worker at any task (inside or outside the 

                                                           
5 The theory of screening, which was presented before, and which is part of the microeconomic theory under 
asymmetric information, uses the assumption that learning is much easier for smart people than for stupid 
people. Thus, if people with many years of schooling are paid a little more than people without any schooling, 
smart people will be induced to go to university, but not stupid people. Thus, when a firm will hire somebody 
with a university degree, it will know that this person is clever. Of course, if the differential of wages between 
educated and non-educated people was too large, everybody, silly people included, would go to university, and 
having a degree would not bring any information to firms. In this approach, education is only a signal allowing 
firms to identify among people who apply for a job those who are clever and those who are stupid. Education 
itself is useless and does not increase productivity. If this theory were fully true you could look for the best field 
of studies signalling a given ability.  For instance, his employer could give somebody able to learn Greek 
philology a very boring task like classifying all the administrative files of the firm since its birth. 
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firm). Thus, a firm will be hesitant to provide this kind of training (for example learning 
a foreign language) because it knows that the worker can threaten to leave the firm 
afterward and ask for higher wages. Thus, firms will be ready to give this training if 
the worker pays at least for part of it, for instance by accepting lower wages over the 
period of training. 
 
Specific training increases the productivity of the worker at specific tasks inside the 
firm, but cannot be used in other firms (for example learning how the computerised 
information system of the firm works). Thus, the firm can be ready to fully pay for this 
training, knowing that it will not have any reason to increase the wages of its trained 
worker. But, is it truly so? The firm and the worker with its new specific knowledge 
are in the situation of bilateral monopolists, which have to share a rent. The specific 
training of the worker has increased his productivity. How to share this increase 
between more profit for the firm and higher wages for the worker? If the worker 
separates from the firm the rent will be lost for both of them. Game theory has 
investigated this question for a long time.  
 
Like education, training is an investment. Thus, it should decrease when the worker 
becomes older, so closer to the age of retirement. 
 
Econometrics. 
Measuring earnings and wages is difficult. When you survey workers you do not get 
the same answers as when you survey firms. Non wage benefits are badly known, 
and they do not benefit to all workers in equal amounts. The number of hours worked 
are also badly known (and the declarations by firms and workers differ). 
 
The distribution of wages and earnings across a sample of randomly selected 
workers is log normal (or if you prefer the logarithm of earnings and wages follow a 
normal distribution). Thus, for reason discussed above, we will take the logarithm of 
earnings and wages as the explained variable of our regressions. 
 
The usual statistical earnings function is: 
 
log( ) ( , , )W f s X zi i i i i= + ε , i N= 1,..,  
 
Wi  represents earnings or wages for the ith individual, si  is a measure of schooling 
or educational attainment, X i  indexes the human capital stock of experience, zi  are 
other factors affecting earnings such as the race, gender, or/and geographical region, 
εi  is a random disturbance term reflecting unobserved ability characteristics and the 
inherent randomness of earnings statistics. It is usually assumed that εi  is normally 
distributed with mean zero and constant variance. 
 
To run a regression we must be more specific with the earnings function. I will 
assume that it is: 
log( ) log( )W W s X X s Xi i i i i i i= + + + + +0 1 2 3

2
4β β β β ε  

 
The fourth term of the right-hand side introduces the fact that returns on experience 
is increasing when people are at the beginning of their professional career, and 
decreasing when they have become old. Thus, we expect: β2 0>  and β3 0< , which 
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implies that experience has the highest return when X = −β β2 32/ ( ) . The fifth term 
means that return on experience is higher for educated people than for people 
without education. Thus, we expect β4 0> . 
 
We can add dummy variables to this equation. For instance, if we think that women 
are less paid than men, ceteris paribus we can add the gender dummy variable DGi . 
It is equal to 1 if individual i is female and to 0 if it is male.  If the coefficient of this 
new variable is denoted asβ5 , we will expect it to be negative. The average earnings 
of a woman will be equal to the proportion exp( )β5 from the earnings of an average 
man, or approximately will be lower than these earnings by proportion β5 . We can 
also investigate if the return to education is the same for a woman as for a man. To 
do that we will add to the right-hand side of the equation the new variable DG Xi i* . 
 
We saw before that education can also be an index of abilities. In this case, the 
estimate of the coefficient of education will be upward biased. Griliches and Mason 
tried to deal with this problem by adding as explanatory variable the result of 
intelligence tests given by the army to its new conscripts. The authors found that the 
correlation between schooling and the results of these tests was very low. They 
concluded that omitting any measure of abilities in the equation does not induce 
serious bias in the estimate of the return to education.  
 
Taubman worked with a sample of 1000 twins. Twins were assumed to have 
benefited of the same social background and to have the same abilities. Taubman 
found that when differences in earnings between pairs of twins were related to 
differences in schooling, the estimated rate of return to schooling was only about 3%, 
much less than the typical findings of 8% found elsewhere in the literature. 
  
However, the majority of the economists believe that differences in abilities do not 
account for a sizeable proportion of earnings differentials among individuals who 
have different amounts of schooling. Thus they side with Griliches and Masson and 
with the human capital theory, against Taubman and the screening theory. 
 
Pages 167-179 are a good survey of empirical results on the earnings function. 
Approximately, one year more schooling increases earnings by 8%.  There are 
results showing that this rate can decrease with the number of years of schooling. 
Change in this rate of return over time is an important problem for labour economics. 
For instance, in the eighties and the beginning of the nineties this rate increased in 
the US, but decreased in France. 
 
Discrimination. 
Women (or blacks, or minorities) are often discriminated against on the labour 
market. The earnings statistical function is a good way to investigate the problem of 
discrimination and to introduce the concept of statistical discrimination. I presented 
above the following earnings function: 
log( ) log( )W W s X X s Xi i i i i i i= + + + + +0 1 2 3

2
4β β β β ε  
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If I define β  as the line vector of coefficients (the first element is log( )W0 ), and Zi as 
the column vector of variables (the first element is a column of 1 and its coefficient is 
the constant term of the regression), this equation can be re-written in matrix form: 
log( )W Zi i i= +β ε . 
 
The estimate of this equation will be: 
log( ) $W Z ui i i= +β  
 
A result of the theory of regression is that the mean of residuals over the total number 
of observations is zero. I will denote as log( )W  the mean of the explained variable6, 
and as Z the mean of the vector of the explanatory variables. Then, I have: 
log( ) $W Z= β . 
 
Now, I will consider that my sample includes male and female workers. I will divide 
this sample into two sub samples. The first only includes female workers. I will run an 
OLS estimation of the earnings function on this subsumable, then I will compute the 
average of this relationship over the subsumable, and I will get: 
log( ) $W ZF F F= β  
 
The right-member of this equation represents the logarithm of the average wages of 
female workers. I do the same estimation on the second subsumable, which only 
includes male workers and I get: 
log( ) $W ZM M M= β  
 
In general, the average wages of the female worker are smaller than the average 
wages of male workers. The statistical results I have just obtained will bring some 
light on the reasons for this difference. I subtract the two last equations and I get: 

log( ) log( ) $ ( ) ( $ $ )W W Z Z ZF M M F M F M F− = − + −β β β  
 

Blinder and Oaxaca commented on this equation. They stated that the mean 
difference in log earnings between male and female workers can be decomposed 
into the effects of differences in their average endowments (the first term on the right-
hand side of the equation), and the effects of discrimination, as revealed by 
differences in estimated coefficients (the second term). Note that average 
endowment differences are weighted by male workers' estimated coefficients while 
differences in the estimated coefficients are weighted by average characteristics of 
female workers. 
 
This decomposition means that, if women as a group are less paid than men, this can 
result from the fact that women spent fewer years at school or at university than men 
(as an average), or this can be because a university degree is less paid when it is 
held by a woman than by a man. Blinder and Oaxaca consider only the second 
reason to be discrimination. 
 

                                                           
6 The exponential of this mean is equal to the geometric average of all the wages of the sample of observations. 
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This decomposition is extremely useful. However, the concepts we introduced and 
the definition of discrimination are purely statistical. For example, we would like to 
measure discrimination on the labour market, or better discrimination in a given firm. 
If in a firm, women are less paid than men (at an average level), this can result from 
less seniority for women related to their strong turnover. This can be unrelated to the 
firm policy. However, it can also result from an unfriendly policy of the firm with its 
female workers (no flexibility for maternity leaves or for working hours). Inversely, if a 
firm pays less a female engineer than a male engineer, this can be due not to a 
sexist attitude of the manager of the firm, but to a sexist attitude of the male workers 
whom engineers have to supervise. Not to go into trouble the manager of the firm 
may be reticent to hire a female engineer, except if she does not cost much. Thus, 
here again, we can see that econometrics is not a substitute for economic analysis or 
even common sense. 
 
We can make a symmetric decomposition: 

log( ) log( ) $ ( ) ( $ $ )W W Z Z ZF M F F M F M M− = − + −β β β  
Now, average endowment differences are weighted by female workers' estimated 
coefficients while differences in the estimated coefficients are weighted by the 
average characteristics of male workers. Applied econometricians used both 
decompositions. I do not know of any argument to prefer one to the other.  I think (but 
I am not sure) that the choice between the two decompositions has no serious 
practical implications7. 
 
Trade unionism. 
 
I will use the same technique as for discrimination. Only the economic interpretation 
will change. I split my sample of workers between two sub samples: unionised 
workers, identified by superscript U, and non-unionised workers, identified by 
superscript N. I run the same regressions as in the case for discrimination. Simply I 
substitute unionised for female workers and non-unionised for male workers. I get the 
two equations: 
log( ) log( ) $ ( ) ( $ $ )W W Z Z ZU N N U N U N U− = − + −β β β  

log( ) log( ) $ ( ) ( $ $ )W W Z Z ZU N U U N U N N− = − + −β β β  
 
Let us consider the first decomposition, for example. The first term of the right-hand 
side represents differences in wages, which are related to differences between 
endowments of the two sub samples of workers. The second term represents the 
effect of unionisation on wages. Belonging to a union increases wages ceteris 
paribus (the constant term of the earnings equation), but it also changes the effects 
of all the variables on wages (for instance formal education has less effect and 
seniority has more effect in unionised firms). The same technique could be applied to 
answer plenty of other questions such as: do small firms pay lower wages than big 
firms? 
 
                                                           
7 An alternative method to investigate the question of discrimination per gender would be to assume that the 
earning functions of men and women differ only by their constant term. This assumption is probably wrong and 
prevents some interesting investigation such as is the return on education the same for men and women. 
However, when the size of the available sample is too small the econometrician can be forced to make such an 
extreme assumption. 
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Exercise 1 is interesting, but bears on descriptive statistics and is more related to 
chapter 1. Exercises 2 to 7 are very good. Exercise 8 is more advanced than the 
course. 
  
A last example as a conclusion 
 
I will use the data of mukherjee\birth.wk1. I want to explain the variability of the birth 
rate between several countries, by the GDP per capita of these countries and by their 
child death rates. I have data on 109 countries in 1985. The birth rate is the number 
of births per 1000 inhabitants in 1985 in the country. It is a coarse index, which does 
not take into account the proportion of women who have an age where they can bear 
a child. The death rate is the proportion of born children dead before the age of 1. 
Economic theory teaches us that the birth rate should decrease with income per 
capita. The intuition for this result is that the opportunity cost of time spent bringing 
up children increases with income. We can also think that if a family wishes to have a 
certain number of children reaching an adult age, birth rate must increase when the 
proportion of children dying young increases. The regression over 109 countries is 
(the Student-t statistics appear under the coefficients)  
 

)04.14).......(23.2)(65.11....(..........
79.0..22.000039.08.18 2

−
=+−= RIMRYBirth tii : 

 
The results look good. 79% of the total variance of the birth rate is explained, which is 
good for a cross-section regression, the signs of the coefficients are right, the 
Student-t are significant. The apparent weakness of the coefficient of GDP per capita 
only results from the choice of units. So, we are tempted to stop our inquiry here.  
 
However, it is wise to check if the residuals of the equation satisfy the assumptions 
required for OLS to give good estimates. To check the normality of the error terms we 
use a Jarque and Bera test. The P-value of this test is 5.74%, which is more than 5%, 
so we do not reject the null hypothesis of normality. We test homoscedasticity by 
checking if the variance of the residuals does not increase with any of the 
explanatory variable. The Goldfeld and Quandt test does not reject homoscedasticity. 
So, we are tempted to stop our inquiry here. 
 
Let us try a graphical analysis and look at the histograms of each of the three 
variables. We can see that the histogram of the birth rate is approximately 
rectangular. The histogram of income per capita is strongly decreasing, and the 
histogram of the child death rate is slowly decreasing. How, can we explain a feature 
as essential as a rectangular histogram with two decreasing histograms?  
 
Now, let us look at the scatter diagrams of the variables taken by pairs. We can 
notice that child mortality is a decreasing, strongly convex, function of GDP per 
capita. We observe the same thing for the rate of birth. However, the birth rate is an 
increasing function, slightly concave, of the child mortality rate.  
 
Thus, it seems that we should transform the variables, first to get the symmetry of the 
histograms of the death rate and of GNP per capita, then to get linear relationships in 
the scatter diagrams. We can identify the best transformations by a succession of 
trials and errors. Or we can use more precise and sophisticated methods (not 
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considered in these lectures). Finally, we substitute GNP per capita by its logarithm 
and the child death rate by its squared root. After these transformations both 
variables have approximately rectangular histograms, and the scatter diagrams 
exhibit linear relationships. However, some scatter diagrams present outliers. For 
instance, China and Sri Lanka have a birth rate lower than what is consistent with 
their low levels of income on the scatter diagram. They also have child death rates 
too low, for the levels associated with their low GNP on the scatter diagram. Oil 
producer countries are in the opposite situation. However, the scatter diagram 
between birth and death rates does not exhibit any outlier.  
 
If we estimate the equation with the transformed variables, we get: 
 

)78.13).......(925.0)(38.0....(..........
85.0..)(06.4)log(63.059.2 25.0

−
=+−−= RIMRYBirth tii  

 
Now, 85%, instead of 79%, of the variance of the birth-rate is explained by the 
regression (note that this comparison is possible because we did not transform the 
dependent variable). The coefficient of GNP per capita has the wrong sign and is not 
significant. Thus it is wiser to remove this variable. We get:  
 

)17.24)(75.2....(..........
85.0..)(83.361.3 25.0 =+= RIMRBirth ti  

 
This regression looks satisfactory. It is associated with a scatter diagram without 
outliers and to two rectangular histograms. The Jarque and Bera test has a P-value 
of 16.5% that is better than for the previous equation.  
 
Thus, our result is that GNP per capita has no direct effect on the birth rate. Of 
course, it has an indirect effect: a higher GNP per capita is associated with a lower 
child death rate. However, this last relationship knows some exceptions, which were 
very helpful to reach our conclusion. China and Sri Lanka have low child mortality 
rates in comparison to their income, oil producer countries are in the opposite 
situation. We can also notice that social development is not always determined by 
income. For instance, if you consider the various states of India, you will find states 
with a high degree of social development and a low income per capita (Kerala) and 
states in the opposite situation. 
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CHAPTER 4. THE ECONOMETRICS OF TIME SERIES 
 
Regression with time lags: distributed lag models 
 
I will consider example Koop\safety.xls. A company bears due to industrial accidents. 
I will denote as Yt  the losses (in pounds) in month t. The same company can provide 
safety training to its workers. I will denote as X t  the number of hours of training 
provided to each worker in month t. I have data available for T=60 successive 
months.  
 
An increase in the safety training of each worker should decrease accidents. Thus, I 
expect a negative influence of X on Y. I could regress Y on a constant term and X as 
in previous chapters. However, things are a little more complicated with time series. 
The safety training of a month will probably reduce accidents in the same month. 
However, it will be more effective the month after when every worker has better 
understood how to use its new knowledge in his workplace. After a few more months, 
the training will begin to be forgotten, workers will come back to their old working 
habits, and the number of accidents will increase again.  
 
This suggest to run a regression of Yt  on a constant term and X t , but also on lagged 
values of X t , denoted X t−1 , X t−2 , X t−3  and X t−4 . For instance, if t represents May 
1999, X t  will represent the number of hours of training in May 1999, X t−1  the 
number of hours of training in April 1999, X t−2  the number of hours of training in 
March 1999, etc. Thus, I will estimate equation: 
 
Y X X X X Xt t t t t t t= + + + + + +− − − −α β β β β β ε1 1 1 2 2 3 3 4 4  
 
and I will get the estimate: 
 
Y X X X X X et t t t t t t= − − − − − +− − − −9200151 145 46214 424 47 199 55 36 901 2 3 4. . . . .  
 
This equation can be given the following interpretation. If the safety training of each 
worker is increased by 1 hour in April 1999 (only in April 1999, neither before nor 
after), losses due to industrial accidents will decrease by pounds 145 in the same 
month, by pounds 462.14 pounds in May, by pounds 424.74 in June, by pounds 
199.55 in July and by pounds 36.90 in August.  The policy of training will have no 
effect in the following months. 
 
The above equation is called a distributed lag model. It includes lagged explanatory 
variables with lags equal to 1, 2, 3 and 4. 4, the highest lag in the equation, is called 
the lag order or the lag length of the equation.  If I have 60 observations on the 
contemporary variables, I only have 59 observations on the variable with lag 1, 58 
observations on the variable with lag 2, ...., 56 observations on the variable with lag 
4. Actually, I can run the regression only for t going from 5 to 60, that is over 56 
observations. This problem is well-taken care of by E-Views. However, you must be 
careful, check the sample used for the regression and compare it to the total 
available sample. 
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How to select the lag order of a distributed lag model? Why did I take an order lag of 
4 in previous equation, instead of 3, or 5? There are several methods to make this 
choice. I will explain one of them.  
 
First, I select a high lag order q. Then, I run the regression on a constant term and on 
X t , X t−1 , .., X t q− . The coefficient of the last variable is βq . I use a Student test to 

check if the estimated coefficient $βq  significantly differs from 0. If it does, I stop here 
and I keep the estimate of the regression. If it does not significantly differ from 0, I 
discard variable X t q−  from the equation. Then, I run the regression on a constant 
term, X t , X t−1 , .., X t q− +1 . Now this regression has one less explanatory variable than 
before. The coefficient of the last variable is βq−1 . I use a Student test to check if the 

estimated coefficient $βq−1  significantly differs or not from 0. If it does, I stop here and 
keep the estimate of the regression. If it does not significantly differ from 0, I discard 
variable X t q− +1  from the equation. Then, I run the regression on a constant term, X t , 
X t−1 , .., X t q− +2 . Now this regression has one less explanatory variable than before. 
Etc. 
 
For instance, in the above example, the P-value of the Student test on $β4  is 44%. 
Thus, I can discard this lag and estimate the regression: 
 
Y X X X Xt t t t t t= + + + + +− − −α β β β β ε0 1 1 2 2 3 3  
 
I get: 
 
Y X X X X et t t t t t= − − − − +− − −90402 22 12590 44349 417 61 179 901 2 3. . . . .  
 
For this new regression, the P-value of the Student test on $β3  is 0.003%. Thus, $β3  
significantly differs from 0, I stop here and keep the last estimated equation. 
 
Thus to compute the lag order of the regression, I process recursively, starting with a 
large order, estimating the equation, computing a t-test on the last explanatory 
variable (the variable with the highest lag), removing this variable if the null 
hypothesis of the test is not rejected, estimating the new equation, etc.  
 
This should remind you of what I told about partial correlation in chapter 3. Actually, 
the above procedure could equivalently be expressed in terms of partial correlation.    
 
Now, I will introduce more advanced topics. I am interested in estimating the 
following equation: 
 
Y X X X Xt t t t t t= + + + + +− − −α β β β β ε0 1 1 2 2 3 3  
 
A problem with this estimation is that, very often, a variable is strongly correlated to 
its lagged values (auto correlated in statistical language). Thus, very often, the four 
explanatory variables of this regression will be correlated to one another, and this 
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multi-collinearity will result in very imprecise estimations of the parameters, with very 
wide confidence intervals. There are two solutions to this problem. 
 
1) I can orthogonalise the explanatory variables by using transformations of these 
variables, which are little correlated to one another. The previous equation can be re-
written: 
 
Y X

X X X X X X
t t

t t t t t t t

= + + + +
− + + − − + − − − +− − − − −

α β β β β
β β β β β β ε

( )
( )( ) ( )( ) ( )

0 1 2 3

1 2 3 1 2 3 1 2 3 2 3
 

 
I will define the first difference of explanatory variable X t  as ΔX X Xt t t= − −1 . Of 
course, I will have the lagged first difference variable defined as: ΔX X Xt t t− − −= −1 1 2 , 
etc. 
I will introduce the new parameters: γ β β β β0 0 1 2 3= + + + , γ β β β1 1 2 3= + + , 
γ β β2 2 3= + , γ β3 3= . These 4 formulae determine the four new parameters γ i  in 
function of the 4 old parameters βi , with i = 0, 1, 2, 3. It would be very easy to invert 
these 4 equations and get the expressions of the 4 old parameters in function of the 
4 new parameters. Thus, the correspondence between the β  and the γ is one to 
one. The regression can be re-written: 
 
Y X X X Xt t t t t t= + − − − +− −α γ γ γ γ ε0 1 2 1 3 2Δ Δ Δ  
 
The advantage of this new expression is that very often, X t , ΔX t , ΔX t−1  and ΔX t−2  
are weakly correlated to one another (this can easily be checked under E-Views). So 
I am rid of the problem of multi-collinearity. The Frisch-Waugh theorem establishes 
that: 1) if I estimate the new parameters γ i  and compute the associated values of the 
old parameters βi , or 2) if I directly estimate the old parameters βi , I will get the 
same estimates. However, the new parameters will be estimated with good precision 
(small confidence intervals) and the old parameters will be estimated with large 
imprecision (large confidence intervals). 
 
The above transformation is extremely used by practitioners, not only for the 
explanatory variable but for the lagged values of the explained variable also, as we 
will see in the next paragraph.  
 
If, for instance, X  represents the logarithm of GDP, ΔX will represent the growth rate 
of GDP. Then, the variables of the transformed equation have an economic meaning, 
and the equation itself can be given an economic interpretation. This makes this kind 
of transformation attractive. 
 
2) I can put some clever constraints on the parameters βi . We saw in last example 
that the βi  were hump-shaped: safety training had an immediate weak effect, it had a 
stronger effect in the short run, a weak effect in the medium run and no effect in the 
long run. Parabolas, that are the graphs of quadratic functions, can have the same 
shape. This suggests to constraint the four βi  to be located on a parabola, which will 
depend on three parameters, which will have to be estimated.  These constraints can 
be mathematically expressed by β γ γ γi i i= + +0 1 2

2 , i = 0 1 2 3, , , . 
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We can easily prove that, with these new parameters, the regression can be re-
written: 
 
Y V W Zt t t t t= + + + +α γ γ γ ε0 1 2 , 
 
 with the new transformed variables: 
 V X X X Xt t t t t= + + +− − −! 2 3 , W X X Xt t t t= + +− − −1 2 32 3 , Z X X Xt t t t= + +− − −1 2 34 9 . 
 
It is easy to estimate the new equation by OLS, then to compute the values of the 
original parameters with the formulae relating the parametersβ  to the parameters γ .  
The three new variables will in general be less correlated to one another than the 
four old variables. Moreover, now we have just three parameters to estimate instead 
of four. We saw before that this will increase the precision of the estimation.  
 
However, everything comes with a price. Here, we run the risk to have imposed 
wrong constraints on the parameters. Thus, the results of the regression can appear 
good. But a test of the constraints on the β  parameters can reject these constraints 
with very low P-value. 
 
This second method is known as polynomial distributed lags or Almon lags.  It is 
implemented in E-Views (chapter 13 of the User's guide). It was extremely popular in 
the seventies and the beginning of the eighties.  Then, it was killed by the error 
correction model, which will be presented later.  
 
We can notice that now the transformed variables have no economic meaning, and 
the transformed equation cannot be given an economic interpretation. 
 
Univariate time series analysis: the autoregressive model of order 1 (the AR(1) 
model) 
 
In the previous paragraph I introduced a model explaining a variable by 
contemporary and lagged values of another variable. Could I explain a variable by 
lagged values of this variable itself? The answer to this question very often is yes.  
 
The simplest equation, based on the above principle, explains variable Yt  by a 
constant term and its own value lagged once; 
Y Yt t t= + +−α φ ε1  
It is called an AR(1) model. 
 
To get a good understanding of such a model, I will make the very simple 
transformation of variable: Y Yt t

' / ( )= − −α φ1 .  So, I only subtract a fixed amount from 
Yt . The equation becomes: 
Y Yt t t

' '= +−φ ε1  
 
εt  results from a series of independent random drawings. Usually, εt  is assumed to 
follow a normal law. Here, for simplicity sake, I will assume that it can take value 1, 
with probability 0.5 and value -1, with probability 0.5.  
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If φ = 0 , at each period t,Yt
'  will take value 1 with probability 0.5 and value -1 with 

probability 0.5. There will not be any time dependence in the values taken by Yt
' . We 

will say that Yt
'  follows a white noise. 

 
If φ = 05.  and if initially Y0 0' = , Y1

'  will take value 1, with probability 0.5 and value -1, 
with probability 0.5. If Y1

'  takes value 1, Y2
'  will take value 1.5, with probability 0.5 and 

value -0.5, with probability 0.5. If Y2
'  takes value 1.5, Y3

'  will take value 1.75, with 
probability 0.5 and value -0.25, with probability 0.5, etc. Thus, a high value of Yt−1

'  will 
be followed by a high value of Yt

' , equal to 15.0 '
1 ±−tY . However, as soon as Yt− >1 2 , 

Yt
'  will be smaller than Yt−1

' . Thus, even if Yt
'  can from time to time go a little far from 

0 and stay at some distance from this value, finally it will be drawn toward 0, and over 
a long period of time it will fluctuate around 0. Statisticians use the expression mean-
reverting process that I find very expressive. Thus, we have a short run time 
dependence: Yt

'  strongly depends on Yt−1
' , less strongly on Yt−2

' , and is almost 
independent of its far past values. This result is sensible to understand the real world. 
The present depends much on the near past, but little on the far past. A series of 
random variables Yt  which may depend on their near past, but which are almost 
independent of their far past will be called a stationary stochastic process8.  
 
To have a better understanding of this result, we can notice that Y Yt t t

' '.= +−05 1 ε , 
implies that Y Yt t t− − −= +1 2 105' '. ε . If I use the second equation to substitute Yt−1

'  in the 
second equation, I will get Y Yt t t t

' '. .= + +− −0 25 052 1ε ε . If I continue recursively to 
substitute for the lagged variable backward, I will finally get:  
 
Y Yt

t
t t t

t' '. . . .. .= + + + + +− −
−05 05 05 050 1

2
2

1
1ε ε ε ε  

 
ε1  can be interpreted as a random shock which hit the variable of interest Y1

'  at time 
1. At time t this shocks has still an effect on Yt

'  , equal to 05 1
1. t− ε . But the size of this 

effect has become very small. Actually, it decreases geometrically at rate 0.5. Then, 
the recent past affects the present, but this effect decreases geometrically over time.  
 
If I assume that t is high, that εt  has a mean equal to 0, and a constant variance 
equal to σ 2 , at time 0, the expected value of Yt  is 0, and its variance is 
σ σ σ φ2 2 4 6 2 2 2 21 05 05 05 1 05 1( . . . ..) / ( . ) / ( )+ + + + = − = − . This term is finite and 
constant. 
 

                                                           
8 Actually, this definition is incorrect. However, being more rigorous would require much more sophisticated 
mathematics than the ones used here. The stationarity of a random process is the constancy of its mean, its 
variance and its autocovariances over time. A change in regime in an economic time series, for instance a period 
of time with a high inflation rate followed by a period of stable prices, is an example of non-stationarity. On the 
other hand, there is a stochastic trend in a series if it is non stationary, but if its first difference is stationary. 
Thus, stochastic trends are very specific cases of non-stationarity. This kind of non stationarity has destructive 
implications for econometrics. The effects of the other kinds of non-stationarity are less clear. However, we can 
hope that if we follow the advice of the previous chapters we will avoid the worst mistakes. 
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Time series theory proves that the correlation coefficient between Yt  and Yt q−  is equal 

to 05. q , or to φ q  in the general case when 0 1≤ <φ . Thus, it decreases with q at 
geometrical rate φ . The correlation between two random variables measures the 
strength of the dependence between these variables. Thus, the previous result 
means that the present depends very much on the near past, and very little on the far 
past. The correlation coefficient between Yt  and Yt q−  will be called rq , the 
autocorrelation of order q, and we can draw a graph, with rq  on the Y-axis and q on 
the X-axis. This graph is called the autocorrelation function. Koop, page 129, gives 
two examples of such graphs.  
 
What will happen if φ = 1? First, I cannot make the previous transformation of 
variable, which would include a division by 0.  The original equation is 
 
Y Yt t t= + +−α ε1  
 
The transformation of variable, which I will use now, is Y Y tt t

' = −α . Thus, instead of 
subtracting a constant term from the original variable, I will subtract a linear 
deterministic trend αt .  This operation is called detrending the series.  
The equation with the transformed variable is: 
 
Y Yt t t

' '= +−1 ε . 
 
This is referred to as the random walk model. If initially Y Y0 0 0' = = , Y1

'  will take value 
1, with probability 0.5 and -1, with probability 0.5. If Y1

'  takes value 1, Y2
'  will take 

value 2, with probability 0.5 and value 0, with probability 0.5. If Y2
'  takes value 2, Y3

'  
will take value 3, with probability 0.5 and value 1, with probability 0.5. Etc. Thus, a 
high value for Yt−1

'  will be followed by a high value for Yt
' , equal to Yt− ±1 1. But now, 

there is no more strength pulling Yt
'  with 0.  

 
Actually, we have Yt t t

' ...= + + + +−ε ε ε ε1 2 1 . The past eternally keeps its influence on 
the present, instead of having an effect, which decreases at a geometrical rate. 
Nothing is ever forgotten. If I was lucky when I was in my twenties, I will still benefit 
from the gains of my past luck in my sixties. In this case, when the coefficient of the 
lagged variable is equal to 1, I will say that the stochastic process of the Yt

'  is non 
stationary with a unit root. We can also say that the series is integrated of order one 
(or has a stochastic trend), which means that its first difference is stationary. 
 
If I assume that εt  has a mean equal to 0, and a constant variance equal to σ 2 , at 
time 0, before the firs drawing of an error term, the expected value of Yt  is 0, and its 
variance is σ 2t . Thus, the variance of the variable of interest increases linearly with 
time. If, at the same time I compute the square of the autocorrelation between Yt  and 
Yt q− , with t q− ≥ 1 , I get 1− q t/ . Thus, for given t, this autocorrelation decreases 
linearly with q. In the stationary case it decreases geometrically. Thus, we have 
identified a series of differences between the stationary case and the non stationary 
unit root case. 



Jean-Pierre Laffargue Page 45 15/05/2014 

 
Unit roots are very frequent in macroeconomics. For instance, example 
koop\income.xls, considers the logarithm of the personal income in the US from 
1954Q1 to 1994Q4. The estimation of the AR(1) equation on this series gives 
Y Y ut t t= + +−0 039 0 996 1. .  . We are very near the unit root equation. In this case 
Y Yt t− −1  is the growth rate of personal income. If I estimate this equation under the 
constraint that the coefficient of Yt−1  is equal to zero, I will get Y Y ut t t− = +−1 0 008. . 
That means that the growth rate of real personal income in the US can be split 
between two components. The first is deterministic and its estimate is equal to 0.8% 
per quarter. It is called a deterministic trend. The second is random and equal to εt . 
Its estimates on the past are the ut , the residuals of the equation. Sometimes ut  is 
positive, sometimes it is negative. It is called a stochastic trend. 
 
When you look at an economic time series over, for instance, 80 quarters, it generally 
has an apparent positive trend. However, it is very difficult to separate by mere sight 
the part of this trend which is deterministic from the part which is stochastic. If you 
simulate the equation: Y Yt t t

' '= +−1 ε  over 80 periods, you might get an increasing 
path, or a decreasing path, or a path having the shape of a U, or of an inverted U, 
etc. Identifying that this path is a pure random realisation of the previous model 
instead of a deterministic movement with important economic meaning cannot be 
decided by simply looking at the graph. You must use sophisticated statistical tests.  
 
In conclusion, the equation Y Yt t t= + +−α φ ε1 , generates very different paths for 
variable Y, when 0 1≤ <φ  and when φ = 1. If we remember that Δ is the first 
difference operator, the previous equation can be re-written 
ΔY Yt t t= + +−α ρ ε1 , with ρ φ= −1. Thus, the non-stationary case is associated to: 
ρ = 0 , and the stationary case to: − ≤ <1 0ρ .  
 
In this paragraph, I have considered only the cases when 0 1≤ <φ , and φ = 1. The 
cases when φ  is negative, or is bigger than 1, are not very interesting because they 
are associated with realisation paths of variable Y, which are unlikely to exist for 
economic time series. 
 
Univariate time series analysis: the autoregressive model of order p (AR(p) 
model 
 
Let us consider for example the case when p=4. An AR(4) is defined by: 
Y Y Y Y Y tt t t t t t= + + + + + +− − − −α φ φ φ φ δ ε1 1 2 2 3 3 4 4  
I have introduced a deterministic trend δt in the right-hand side of the equation just to 
be more general. A yearly time series can sometimes be represented with a good fit 
by an AR(1). A quarterly or a monthly time series will need an AR with a higher order. 
This order can be computed as in the first paragraph by a series of Student tests on 
the coefficient of the variable with the highest lag. A quarterly or a monthly time 
series will probably exhibit some seasonality. There are several ways to deal with this 
feature, but they will be better presented in a course on time series analysis. In his 
book, Koop presents the simplest method, which is to introduce seasonal dummies 
variables in the equation. The only question I will investigate about this equation will 
be: is the series (i.e. the stochastic process) of the Yt  stationary or not? To answer 
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this question, I will re-write the previous equation by using the operator first difference 
Δ : 
 
Y Y Y Y Y

Y Y Y Y t
t t t t t

t t t t t

− = − − − − − − + + −
− + − − − + +

− − − −

− − − −

1 1 2 3 4 1 2 3 4 1 2

3 4 2 3 4 3 4

1α φ φ φ φ φ φ φ
φ φ φ δ ε

( ) ( )( )
( )( ) ( )

 

 or with an evident transformation of parameters: 
tttttt tYYYYY εδγγγρα ++Δ+Δ+Δ++=Δ −−−− 3322111  

 
As in the previous paragraph, the non-stationary case with a unit root is associated 
to: ρ = 0 , and the stationary case to: − ≤ <1 1ρ . I want to test the presence of a unit 
root against the alternative of stationarity. The problem is that under the hypothesis of 
non-stationarity the Student statistics of ρ  will not follow a Student distribution. Thus, 
I cannot simply compare this statistic to 1.96. Moreover, in the case of a unit root, the 
Student statistics of the other coefficients of the regression do not follow Student 
distributions (I think that page 140 of the book by Koop is wrong). Thus testing ρ = 0  
is more complicated than we could have expected. The tests I will use are called 
augmented Dickey-Fuller (ADF) tests. The term augmented is relative to the lags on 

tYΔ  which appear in the equation in order to improve its fit. I will present a strategy of 
nested ADF tests. I will apply it to three series of Mukherjee\tanmon.wk1. These 
series concern Tanzania and are log(M2), the logarithm of the quantity of money, 
log(CPI), the logarithm of the consumer price index and XGROW, the growth rate of 
exports9. The statistical tables of Dickey and Fuller are given page 480 of the book. 
You will find the same tables in the book by Walter Enders, Applied Econometric 
Time Series, John Wiley and Sons, pages 419-421. The ADF test is explained in this 
book on pages 221-227.  
 
First step. 
 
I run the regression tttttt tYYYYY εδγγγρα ++Δ+Δ+Δ++=Δ −−−− 3322111  
The null hypothesis is 0=== δρα . The model can be re-written under this 
hypothesis: 

ttttt YYYY εγγγ +Δ+Δ+Δ=Δ −−− 332211  
The lag order of the autoregression can be computed on this last equation by a 
succession of Student tests, as explained before. The alternative hypothesis is 
α ρ δ* * ≠ 0 . 
 
I will compute the Fisher statistics associated with the three constraints defining the 
null hypothesis (this statistic is computed by E-Views under the title Wald test). But, I 
will not use the P-value given by E-Views, nor a Fisher table.  
 
I will use the critical value given for statistics 2Φ of page 480 of the book, which at the 
5% significance level for a sample of size 25 is 5.68 (4.67 at 10%). This means that if 
the null hypothesis is true, there is a probability of 5% to get a statistic larger than 
5.68. I get for this statistic a value of 3.30 for log(CPI), of 6.83 for log(M2) and of 5.60 

                                                           
9 These series are yearly. Thus, I will limit myself to only one lag for the first difference term (instead of three 
lags) 
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for XGROW. Thus, I will accept the null hypothesis for log(CPI), and conclude that 
this series presents a stochastic trend without a deterministic trend.  
 
If I want to be fully assured of the validity of this conclusion, I can re-estimate the 
equation for log(CPI) after having put 0=δ , that is the equation: 

tttttt YYYYY εγγγρα +Δ+Δ+Δ++=Δ −−−− 3322111  
 
Then, I test the null hypothesis: 0== ρα . The alternative hypothesis is: α ρ* ≠ 0  . 
Both hypothesis do not assume anything about δ . 
 
I compute the Fisher statistics of this test and I compare it to the critical value of 
statistics 1Φ of page 480 of the book, which at the 5% significance level for a sample 
of size 25 is 5.18 (4.12 à 10%). I get a statistic much lower than these values and I 
keep the previous conclusion.  
 
Second step 
 
I have not reached any conclusion yet for series log(M2) and XGROW. I will test for 
these series the null hypothesis: 0== ρδ . The model can be re-written under this 
hypothesis:  

ttttt YYYY εγγγα +Δ+Δ+Δ+=Δ −−− 332211  
 
The lag order of the autoregression can be computed on this equation by a 
succession of Student tests, as explained before. The alternative hypothesis is 
δ ρ* ≠ 0 . Both hypothesis assume nothing on α . 
 
I compute the Fisher statistics associated to these constraints (with E-Views). I 
compare them to the critical value of statistics 3Φ of page 480 of the book, which at 
the 5% significance level for a sample of size 25 is 7.24 (5.91 at 10%). I do not reject 
the null hypothesis for log(M2) (its statistic is equal to 3.61) but I reject it for XGROW 
(its statistics equal to 8.39). Thus, the logarithm of the quantity of money presents a 
stochastic trend and a deterministic trend.  
 
If I want to feel secure, I can test only 0=ρ . The null hypothesis is ρ ≠ 0 . Under 
both hypothesis i do not make any assumption on α and δ . I will compute the 
Student statistic which is equal to –0.849. I will compare it to the critical values given 
for 3τ  page 480. At 5% significance level, the critical value is –3.60 (-3.24 at 10%). 
This means that if the null hypothesis is true, there is a probability of 5% of having a 
statistic smaller than –3.60. Thus, I will accept that log(M2) has a stochastic trend. 
 
If I did the same test for the equation without a deterministic trend (estimated after 
having imposed 0=δ , as in the end of the first step) I would get a positive statistics, 
which I should compare to the critical values given for 2τ  page 480 (-3 and –3.62). 
Thus, I will still not reject the null hypothesis of a stochastic trend. 
 
Thus, I find that in Tanzania, the logarithm of the quantity of money exhibits a 
deterministic trend and a stochastic trend, and the logarithm of price only includes a 
stochastic trend. Does this difference between money and price have an economic 
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meaning?  Over the observation period the inflation rate was always positive. But, it 
also increased, and we can notice a break in the graph of log(CPI). If this variable 
had followed a stochastic trend without a deterministic trend, we should have 
observed some negative inflation rates, which is not the case. I will regress 

)log(CPIΔ on its lagged value and on a constant term. The constant term has a 
Student statistic slightly greater than 2. Residuals are not distributed uniformly 
around 0 (there is a difference between the beginning and the end of the sample. If I 
run the regression over various subsamples, I get very different estimates of the 
coefficient of the lagged variable. Thus, I will add to the equation a dummy variable 
equal to 0 before 1980 and to 1 in 1980 and afterward. Its Student statistics and the 
Student statistics of the constant term are larger than 3. Thus, it seems that the 
logarithm of price has a deterministic trend with a break. The automatic process of 
successive steps, which I used, was insufficient to detect this feature in the series. 
Thus, I will conclude that the logarithms of the quantity of money and of the 
consumption price present both a deterministic trend and a stochastic trend. But the 
deterministic trend of the second series has a break, which could be identified only 
after some reflection. 
 
Step 3 
 
If I have not yet reached a conclusion, which is the case for XGROW, I will test in the 
original equation ρ = 0 , and I will compare the Student statistics of this test to the 
critical value associated with a significance level of 5% for a standard normal 
distribution. This critical value is -1.96. The value if the statistics of the test is -4.1, 
which is much lower So, I reject the null hypothesis ρ = 0 .  
 
Step 4 
 
If I have reached this step, which is the case for XGROW, I will conclude that the 
series has no stochastic trend. Then, I can test if it has a deterministic trend by 
computing the Student statistics of δ  and by comparing it to the critical values of a 
Student table (by simply running a Wald test under E-Views). In the present case, I 
do not reject the null hypothesis and I conclude that XGROW has no deterministic 
trend.  
 
There is a problem with ADF tests. They test the null hypothesis of non-stationarity 
with a unit root against the alternative hypothesis of stationarity. If we use these tests 
on a series which is non stationary, but which does not have a unit root, for instance 
a series going through several regimes, like the inflation rate or the interest rate 
which were very high until the mid eighties and low afterward, the tests will probably 
conclude that the series has a unit root. It is of course a bit silly to conclude that the 
interest rate follows a random walk when there exist a powerful strength pulling it 
toward levels around 5% per year. In statistical language I will say that ADF tests lack 
power against states of the world, which differ from the null and the alternative 
hypothesis10. Moreover, these tests require samples large enough (around 100 at 
least). They become doubtful if they are used on small samples.  
 
                                                           
10 Actually, we cannot discriminate between a series of 80 points generated by a random walk and a series 
generated by a stationary autoregressive process with a few well-chosen structural breaks. The robust methods 
presented in chapters 1 and 2 can be of some help, and should be used besides of ADF tests.  
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Regression with time series variables : the case with stationary variables 
 
If I merger the specifications of equations introduced in the first and the third 
paragraph of this chapter, I will get the autoregressive distributive lag (ADL) model: 
 
Y t Y Y X X Xt t p t p t t q t q t= + + + + + + + + +− − − −α δ φ φ β β β ε1 1 0 1 1.. ..  
 
We saw how to re-write this equation into the equivalent form: 
 

tqtqttptptttt XXXYYXYtY εωωθγγθρδα +Δ++Δ++Δ+Δ++++=Δ +−−−−−− 1101111 ....  
 
When variables X and Y are both stationary, we face an easy problem.  Estimation 
and tests can proceed as in Chapter 3.  Actually, successive Student tests can be 
used to determine both lag orders p and q.  
 
The second equation can be used to introduce the concept of the long run multiplier 
(LRM). If I increase X t  by an amount of 1, for every value of t larger than q, in the 
long run Yt  will increase by a constant amount equal to LRM, and ΔX t  and ΔYt  will 
not move. Thus, we must have LRM = −θ ρ/ . In the language of system analysis I 
will tell that a permanent increase in the input by 1, will induce in the long run a 
permanent increase in the output by LRM = −θ ρ/ . This must be interpreted all other 
things being kept equal, or ceteris paribus. You remember that in the example on 
industrial accidents and training, I considered transitory changes in the input (limited 
to 1 month). Here, these changes are made permanent.  
Koop gives a nice example of an ADL model in pages 150 and 151. 
 
The ADL model can be written  
 

tqtqtptptttt XXYYXtYY εωωγγρθρδραρ +Δ++Δ+Δ++Δ++++=Δ +−−−−−− 1101111 ....])/()/(/[
 
 
The first term on the right-hand side represents the difference between the level on 
the explained variable and the level of the explanatory variables in the previous 
period. If this difference is zero, we can interpret it as a long-run equilibrium. If it is 
nonzero, we can interpret this value as disequilibrium or an “error”. The proportion 
ρ of this error is corrected by a movement in the explained variable in the current 
period. However, this movement also depends on the error term, lagged value of this 
movement and current and lagged values of the variation of the exogenous variable, 
which compose the short run dynamics of the model. This model is called an error 
component model. IT is much more used when variables are non-stationary, but it 
has already a meaning with stationary variables. 
 
 
Regression with time series variables: the case with non-stationary variables: 
spurious regressions 
 
Consider the very simple time series regression: 
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Y Xt t t= + +α β ε  
 
It can be considered as a simplified version of the ADL model presented above. 
When X and Y are non stationary with a unit root, this regression meets plenty of 
problems. For instance, if the true value of β  is zero, its estimate could differ a lot 
from 0, a Student test could conclude that it significantly differs from 0 and the R 2  of 
the regression could be quite high. Thus, the regression can be wholly spurious. We 
can easily understand that with the following exercise with E-Views. 
 
Go into E-Views. Create a work file with yearly data over the period 1960-2000 (41 
observations). 
 
Write on the command line the following instructions. At the end of each line push the 
Enter key. Nrnd is a command, which produces a number which can be considered 
as resulting from the drawing of a random variable with a standard normal 
distribution.  
Smpl1960 1960 
Series x=1 
Series y=1 
Series z=1 
Series t=1 
Smpl 1961 2000 
Series x=x(-1)+nrnd 
Series y=y(-1)+nrnd 
Series z=0.5*z(-1)+nrnd 
 Series t=t(-1)+1 
Smpl 1960 2000 
 
Look at series t. 
 
Look at series x. Does it have a trend? Regress x on t. Does the coefficient of t 
significantly differ from 0? Look at the R2 of the regression. Do the residuals look 
homoscedastic? Process a White test. In theory the variance should be a linear 
function of time. Look at the Durbin and Watson statistics. 
 
Do the same things with y and t. 
 
Do the same things with y and x. In 20% cases the Student statistic is smaller than 
1.67, in 5% cases it is between 1.67 and 2, in 9% cases between 2 and 2.67, in 66% 
it is larger than 2.67. 
 
We get what is called a spurious regression. Understanding such a regression, and 
realising that many regressions run in macroeconomics are actually spurious, might 
be the most important result of the econometrics of variables with stochastic trends. 
In a spurious regression, the R2 is often high, but the DW is low. Experience showed 
that when R2>DW, then the regression is probably spurious. Moreover, in such a 
regression, the Student’s test rejects more and more often the right hypothesis that 

0=β  when the size of the sample increases.  
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Look at the series z. Compare its mean-reverting feature to the random walk feature 
of the previous series. For this last kind of series history has eternal consequences 
(hysteresis). 
 
Exercise. Use the data in Mukherjee\Tanmon. Look at variables CPI and log(CPI) for 
Tanzania over 1966-1992. Look at M2 and log(M2). Look at the trends and the 
dispersions of the differences from the trend.  
 
Regress log(CPI) on a constant term and on log(M2). Will this regression turn you 
into a monetarist?  
 
Regression with time series variables: the case with non-stationary variables: 
Cointegration 
 
We saw that running the regression; Y Xt t t= + +α β ε  can be very dangerous when 
variables X and Y are non-stationary with a unit root.  However, there is a very 
important case where this regression has a meaning. Let us write it a bit differently: 
Y Xt t t− − =α β ε . X t  and  Yt  both have stochastic trends. That means that the paths 
they follow go in any direction, without any mechanisms pulling them toward 
equilibrium values. It is this feature which was given the appellation of a random 
walk. Very often, the paths of the two variables are unconnected or loosely 
connected. That means that εt  will also follow a random walk that is that no strength 
will force the two variables to follow their erratic paths together (as two drunken 
friends leaving the last pub on Saturday night and mutually holding their shoulders).   
 
However, sometimes, for a precise value of α , εt  will follow a stationary stochastic 
process without any stochastic trend. That means that variables X t  and Yt  will 
wander randomly, but together (like the two drunken friends). In this case, X t  and Yt  
are said to be cointegrated11.  
 
This concept has a very intuitive economic meaning. Economic theory investigates 
behavioural relationships, like consumption being a function of present and past 
incomes and wealth. Or it builds equilibrium equations, for instance equalising to zero 
the excess demand for a commodity, which is a function of the price of this 
commodity and close substitutes to it. The economic variables, which appear in these 
functions and equations, most often, have stochastic trends. In the real world, you do 
not expect these functions and equations to be perfectly valid. Thus, you will 
introduce in them a random error term. However, for economic functions and 
equations to have meaning, this error term must fluctuate around zero. It cannot have 
a stochastic trend. If your equilibrium equation is wrong by 2% some day, you will 
expect it to be wrong by -2% some other day: your error term must follow a mean-
reverting process pulling it toward 0. Otherwise, you could hardly consider your 
equilibrium relationship to be true equilibrium. Thus, macroeconomists love finding 
co-integration relationships, because most often they can be given an economic 
interpretation. 
 

                                                           
11 Another denomination would be to say that they have a common (stochastic) trend. 
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Koop's book gives (pages 154, 155, 157, 158, 161 and 162) an illuminating example 
of two co-integrated variables, which are the price of regular oranges and the price of 
organic oranges. 
 
How can we test if two variables X t  and Yt  are co-integrated? Engle and Granger 
devised a very simple test. First run an OLS regression of Yt  on X t  and a constant 
term and save the residuals. Then, carry out a unit root test on the residuals. You will 
have to run the same equation as in page 39, but without including in it a constant 
term nor a deterministic trend (so, after having put α δ= = 0 ). In this test the null 
hypothesis is that the residuals include a unit root, which implies that X t  and Yt  are 
non-cointegrated. If you reject the null hypothesis, you will accept that the residuals 
are stationary, that is that X t  and Yt  are cointegrated.  The test uses the t Student 
statistics on ρ . A natural idea would be to compare this statistics to the values given 
for the ADF test τ1 , page 480 in the book by Mukherjee and alii (or in the book by 
Enders). However, there is a small complication taking care of. Using an ADF table 
would be right if we observed the values of the error terms εt . But we only observe 
the values of the residuals of the equation ut , which are estimates of the error terms. 
Because of that we must use a different statistical table, built by Engle and Granger. 
However, the ADF table and the Engle and Granger table are rather similar.  
 
If we conclude that X t  and Yt  are cointegrated, the OLS regression, which was run 

in the first step of the test, is no more spurious, and estimate $β  is a good estimate of 

the long run multiplier of X on Y.  Actually, the theory of cointegration proves that $β  
is still a better estimator than in the classic situation where all the variables are 
stationary (this property is called super-convergence in statistical language). 
However, although I think that this result is theoretically interesting, I am less 
convinced by its practical implications. In the regression of Yt  on X t  we are not 
allowed to make Student or Fisher tests on the estimates of the parameters. These 
estimates follow non-classical and complex distributions.  
. 
If X t  and Yt  are cointegrated, Y Xt t t= + +α β ε  represents the long run relationship 
existing between X and Y, and β  is the long run multiplier, which measures what 
effect in the long run a permanent increase in X will have on Y. The short run and 
medium run dynamics of Y are still to be determined. Engle and Granger noticed that 

tu , the residual of the cointegration process, is stationary. Moreover, the first 
differences of the two variables, tXΔ  and tYΔ , are also stationary. Thus it seems 
natural to look for and ADL equation relating these variables: 

tqtqtptpttt XXYYuY νωωγγλα +Δ++Δ+Δ+Δ++=Δ +−+−−−− 1111111 ....'  
 
In this equation I have denoted the error term tν , to avoid confusion with the error 
term of the cointegration relationship which was denoted tε . This equation is called 
an error correction model (ECM). To understand this appellation you must remember 
that when 1−tu  is positive, that means that 1−tY  is above is normal or equilibrium value. 
For a well-behaved ECM we must have 01 <<− λ . That means that, all other things 
being constant, we will have: 0<Δ<− tt Yu , or 11 −− <<− tttt YYuY . Thus, the 
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desequilibrium or the error on Y, observed at time t, will be partly corrected at time 
1−t .  

 
An interesting property of an ECM equation is that all the variables of the equations 
are stationary. Thus, we can estimate it as an ordinary ADL equation, and test the 
significance of its parameters with classical Student and Fisher tests.  
 
Engle and Granger proposed to estimate an ECM in two steps. First, test for 
cointegration. If this hypothesis is accepted, keep the residuals of the cointegration 
equation, put them in the ECM, and estimate it with OLS. The estimation of the 
cointegration equation will give the long run multiplier of the relationship between X 
and Y. The estimation of the ECM will give the short and medium run dynamics.  
 
Exercise 1. Use the data in Mukherjee\pakep.wk1. LX represents the logarithm of the 
volume of exports by Pakistan. RER is the logarithm of the real exchange rate of 
Pakistan. If RER increases, the Pakistanese currency depreciates in real terms. A 
strong devaluation occurred in 1980. Then, its effects were cancelled by a strong 
inflation. Then, a structural adjustment plan has induced a continuous real 
depreciation of the Pakistanese currency since 1985. The graphs of the two variables 
look similar. Draw a scatter plot. ADF tests conclude that both variables are non-
stationary with unit roots.  
Run the regression of LX on a constant term and RER. Compute the ADF test on the 
residuals. The Student statistics on ρ  takes value –1.88. It is smaller than the critical 
value given by Engle and Granger (-3.37). Thus, we will reject the hypothesis that the 
two series are cointegrated. However, after having looked at the graphs of the two 
series, are you fully convinced by this conclusion?  
 
Exercise 2. Use the data in Mukherjee\crcon.wk1. Look at the series log( C) and 
log(Y), which are the logarithms of real consumption and GDP per capita in Costa 
Rica. Both variables are non-stationary with unit roots. Look at the graphs of both 
variables. Run the regression of log( C) on a constant term and log(Y). Think a little 
about the strange elasticity you get. Does the Engle and Granger test reject 
cointegration? 
Mukherjee and alii wrote that they estimated such a consumption function for 8 
countries (industrialised and developing). Each time they rejected the hypothesis of 
cointegration between consumption and income. This conclusion looks a bit strange 
and raises some suspicion on the Engle and Granger test.   
 
In the above examples the relationship between the two series which were 
investigated, was each time strong but imperfect. The robust methods and fragility 
analysis presented in previous chapters, can precise the nature of these 
imperfections. We should consider that the rejection of cointegration might come from 
these imperfections and not from a stochastic trend in the error term. Anyway, a 
convincing identification of such a trend would require a lengthier period of 
observation and smoother economic conditions, consistent with the stationarity of the 
first differences of economic variables in Pakistan and Costa Rica. In Costa Rica, 
something special happened at the end of the seventies, which increased the share 
of consumption in GDP. Thus, something important is lacking in the consumption 
equation, which is related to economics and not to the theory of cointegration.  A last 
remark: remember what we told about the fragility of the ADF test when the true state 
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of the world strongly differs from the null hypothesis and the alternative hypothesis. 
And the Engle and Granger test has some kind of ADF test embodies in it. 
 
My personal experience is that Engle and Granger test almost always rejects the 
hypothesis of cointegration. This result can be proved mathematically and interpreted 
as a weak power of the test. There is better way testing for cointegration and 
estimating an ECM, which does not suffer from this weakness in power. Remember 
that an ECM can be written: 
 

tqtqtptptttt XXYYXYY νωωγγβαλα +Δ++Δ+Δ+Δ+−−+=Δ +−+−−−−− 11111111 ....)('  
 
or 
 

tqtqtptptttt XXYYXYY νωωγγβλα +Δ++Δ+Δ+Δ+−+=Δ +−+−−−−− 11111111 ....'"  
 
with λααα −= '" λββ ='  
 
Variables X and Y appear with one lag. This equation can be estimated by OLS. λ  
must significantly differ from 0 for X and Y to be cointegrated. To test this assumption 
we shall compute the Student statistics of λ . This statistics does not follow a Student 
distribution12. However, Bosjwyk computed tables of critical values for this statistic. 
These tables differ when there is (or not) a constant term or a trend in the ECM. The 
opposite results often given by the Engle and Granger test and the Bosjwyk test raise 
some suspicion on cointegration tests. Ericsson and MacKinnon added 
improvements to Bosjwyk’ test. 
 
My personal experience is that the two steps Engle and Granger method is 
inadequate in macroeconomics: the available series are too short and they cannot be 
made stationary by simply taking their first differences. The direct estimation of the 
ECM and the test of the significance of the coefficient of the lagged explained 
variable is better. However, we must not forget to use the robust methods and 
exploratory analysis presented in previous chapters.  
 
In the example on spurious regressions, we introduced two independent series, and 
noticed that they were not cointegrated. However, two series can depend on each 
other and be non-cointegrated. I will give an example. Let us denote by tε  and tν  
two independent white noises with standard normal distributions. I will define two 
random walks by:  

ttt xx ε+= −1  00 =x  

ttt zz ν+= −1  00 =z  
 
I can easily show that at time 0, I have:  

0== tt EzEx , tEzEx tt == 22  
 

                                                           
12 Under the assumption of cointegration, the Student statistics of the coefficients of the non-stationary variables 
of the ECM do not follow a Student distribution. However, the Student statistics of the coefficients of all the 
stationary variables of the equation and of the constant term follow a Student distribution. 
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I will build the non-stationary variable: ttt zxy += 10   
 

ty  is a random walk: tttt yy νε +=− − 101 , with tt νε +10  a Gaussian white noise of 
mean 0, standard deviation 11 and with: 00 =y . At time 0 I have: 0=tEy ,  E tyt 112 = . 

ty  and tx  are non-cointegrated : the difference tt xy 10−  follows a random walk, and 
has a variance equal to t  that is increasing indefinitely over time. This does not 
prevent that the knowledge of tx  brings an important information on ty . If we are at 
time 0, and if we try to forecast the value which will betaken by y at time t, if we do 
not know tx  we will forecast that 0=ty , and the variance of the forecast error will be 

t11 . If we know tx , we will forecast tx10  and the variance of the forecast error will be 
t . Of course, this variance increases over time. But it is 11 times smaller than when 
we do not know the value taken by tx .  
 
Thus, knowing the dependence relationship between two non-stationary variables 
with a unit root ty  et tx  is useful, even when these variables are non-cointegrated. 
For instance, knowing that: ttt zxy += 6 , with tz  non-stationary and independent of 

tx , is a precious information if we want to forecast y conditionally to x, or if we want to 
understand economic behaviour. Unfortunately, time series econometrics does not 
know how to estimate equations relating non-stationary and non-cointegrated 
variables. But panel data econometrics recently developed methods to estimate such 
equations. 
 
The literature on the econometric theory of non-stationary variables and of 
cointegration is huge and sophisticated. However, its applications to applied 
macroeconomics are sometimes unconvincing. For instance, integration and 
cointegration tests often assume null and alternative hypotheses, which are both 
clearly wrong. What does the conclusion of these tests mean under these 
circumstances? You remember that I have advocated using robust methods and 
fragility analysis to explore these situations.  An automatic application of the theory of 
integration and cointegration to economic problems can easily give incredible and 
queer results because the methods developed by this theory are fragile. Thus, when 
you apply these methods you must not forget the rest of econometrics nor 
economics, if you want to reach serious results. 
 
A different problem is that the tests and methods that I have presented in this chapter 
are the most ancient and the best known ones. They are neither the most efficient 
nor the most robust ones. There exist plenty of more recent methods and tests. 
However, even if they look better, their precise qualities in realistic situations are not 
well understood. This is why most of them are not implemented in econometric 
software like E-Views. This is also why econometric books are not unanimous in the 
strategies they advise dealing with non-stationary variables. There is still much 
controversy among the best econometricians about the best ways to apply their 
theoretical results in applied econometrics. 
 
Two last remarks. First, it is unreasonable to use the methods of this chapter on 
series which do not have at least 80 observations and which present (themselves or 
their first-differences) a regular pattern (without breaks in levels or trends). Second, 
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the negative results on spurious regressions are very important: plenty of 
macroeconometric relationships estimated in the 60s and the 70s, before 
econometricians were aware of this problem, were simply fully wrong.  
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CHAPTER 5. EXOGENEITY 
 

The main difficulty with applied econometrics is that notions, which are very 
advanced from a theoretical point of view, can be extremely useful for the most 
elementary applications. However, these notions are taught in advanced level 
courses of econometrics, are tricky (even when they are not truly difficult) and 
sometimes are not fully understood, even by theoreticians. In the previous chapter I 
gave the example of spurious regressions. When this problem was discovered in the 
seventies, many of the well-established results in applied macroeconometics were 
found to be spurious, so without any meaning.    
 
The correct understanding of the concept of exogeneity is still more recent: the 
seminal paper dates back of 1983. However, there are still applied works in 
econometrics that are based on a misunderstanding of this concept, or of theoretical 
developments connected to it like Sim’s critique. So, these works are simply totally 
wrong. 
 
Actually there are three concepts of exogeneity: weak exogeneity, which is useful for 
estimation, strong exogeneity, which is useful for forecasting (in a time series 
context), super exogeneity, which is useful for the framing of economic policies and is 
connected to the Lucas’ critique. I will limit myself in this course to the first concept. 
 
An example 
 
The model represents a closed economy. It includes two equations. The first one is a 
traditional Phillips curve:  
(1) tttty νπαπαα +++= −1210  

ty  is the GDP and tπ  is the inflation rate, both computed on period starting at time t  
and ending at time 1+t . 0α , 1α  and 2α  are parameters. The level of activity is 
positively related to inflation. Thus, we assume: 021 >+αα , even if economists have 
given good reasons for 2α  being negative. 
 
The second equation represents the policy of the Central Bank, which sets inflation 
according to the monetary rule: 
(2) tttt yy ηρππρππ +−+−+= −− )()( 1211

r  
π  is the inflation target rate chosen by the Central Bank, y  is potential output13, 1ρ  
and 2ρ  are parameters (the first included between 0 and 1 and representing the 
adjustment speed of the Central Bank to its target).  
 

tν  and tη  are the error terms of the equations. Each error term is assumed to be 
identically distributed, independent of information available at time 1−t  (which 
includes past values of GDP and inflation), with respective variance 2

νσ  and 2
ησ . 

Moreover, I will assume that the two error terms are normally distributed. Thus 
independence and non correlation will be equivalent. I am interested by estimating 

                                                           
13 To simplify the example I will assume that potential output is constant and non observable. 
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the Phillips curve, that is the parameters 0α , 1α , 2α  and νσ , which are called the 
parameters of interest. 
 
In period t , the model determines the current values of GDP and of the inflation rate 
as functions of their past values and of the current values of the error terms.  I will 
look at the probability distribution of variables ty  and tπ  conditionally on their past 
values. I will give asymmetric roles to these two variables. I will start by the inflation 
rate, which is determined by the monetary reaction function (2). Its distribution, 
conditional on past values of both variables is normally distributed, with an expected 
value of )()( 1211 yytt −+−+ −− ρππρπ r  and a variance of 2

ησ . 

I will turn to the probability density distribution of ty , conditionally on the past values 
of both variables and the current value of the inflation rate tπ . In general, the error 
term of the Phillips curve tν  is correlated to the error term of the monetary reaction 
function tη . I can represent this relation by the equation: 

(3) ,'
ttt νγην +=  

The error term '
tν  of this equation has an expected value of zero, is uncorrelated with 

tη  and has a variance equal to: 222
ην σγσ − . If I substitute equation (3) in equation (1) I 

will get: 

(4) 
'

12111210

'
1210

)]()([( tttttt

ttttt

yy

y

νρππρππγπαπαα

νγηπαπαα

+−−−−−+++

=++++=

−−−

−  

 

Thus, the conditional probability distribution of ty  is normally distributed, with 
expected value: )]()([( 12111210 yyttttt −−−−−+++ −−− ρππρππγπαπαα , and 
variance: 222

ην σγσ − . I can estimate equation (4), by an OLS regression of ty  on a 
constant term and on variables tπ  and 1−tπ . However, I will not get the estimates of 
the parameters of interest of the Phillips curve 0α , 1α , 2α and 2

νσ , but instead of 
parameters: y210 )1( γρπργα +−− , γα +1 , 12 γρα −  and 222

ην σγσ − . Thus, I will get a 
mix of estimates of the parameters of the Phillips curve and of the monetary reaction 
function.  
 
The concept of weak exogeneity 
 

Now, I will turn to a general approach. I define a model by the probability density of a 
set of variables conditional on the past values of these variables. This model 
depends on a set of parameters. In the example, the model is defined by equations 
(1) and (2). The set of parameters is denoted by vector: 

),,,,,,,,,( 21210 yπρρσγσαααθ ην= , with: Θ∈θ . I chose among the parameters of the 
model the parameters of interests. In the example, they are the parameters of the 
Phillips curve and we denote them by vector: ),,,( 210 νσαααψ = . 
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I split the set of variables between a set of explanatory variables (the inflation rate 
here) and a set of explained variables (the GDP here). The probability density of the 
total set of variables is the product of the density of the explained variables 
conditional on the explanatory variables (here the conditional density of GDP) and of 
the marginal density of the explanatory variables (here the marginal density of the 
inflation rate). I call 1φ  and 2φ  the parameters, which respectively appear in the 
conditional and the marginal densities. Of course, these parameters can be defined 
in many different ways by a simple reparametrisation. I denote: ),( 21 φφφ =  the vector 
of both sets of new parameters, with: Φ∈φ . In a parsimonious parametrisation of 
both densities, the dimension of vector iφ , with: 2,1=i , will not be larger than the 
dimension of vector θ . 

 
I will say that the explanatory variables are weakly exogenous for the parameters of 
interest if there exists a parametrisation of the conditional and the marginal 
probability densities such that 1φ  and 2φ  are variation free. That means that the sets 
they must belong to, 1Φ  and 2Φ , are independent of each other, that is: 

21 Φ×Φ=Φ 14.  

 
The parameters of interest depend on the parameters, which appear in the 
conditional sub model for the explained variables, but not on the parameters, which 
appear in the sub model for the explanatory variables: )( 1φψ g=  alone. 

 
In this case, I can estimate the parameters of interest by only using the conditional 
sub model of the endogenous variables, without knowing the marginal sub model of 
the explanatory variables and without loss of information15. 
 
In the example, the inflation rate is weakly exogenous for the parameters of the 
Phillips curve (1) only if: 0=γ , which is the absence of correlation between the error 
terms of the Phillips curve (the equation we want to estimate) and of the monetary 
reaction function.  
 
Comments 
 
In the example I have introduced a complete structural economics model of the 
economy. Then I have isolated an equation and I have expressed my wish to 
estimate only the parameters of this equation. So, the concept of weak exogeneity is 
an economic concept connected to a limited information method of estimation (like 
double least squares, instrumental variables or GMM). A purely statistical approach, 
like the direct estimation by OLS of equation (4) is perfectly correct at a statistical 
                                                           
14 A trick is that if both 1φ  and 2φ  include a common parameter of θ , this condition will not be satisfied, even 
if this parameter can belong to the whole real line. 
15 This last qualification has some importance. Weak exogeneity is necessary to get an efficient estimation of the 
parameters of interest. However, it is not a necessary condition for consistent but inefficient estimations.  
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level. However, it does not answer the question of estimating the structural economic 
parameters of interest of the Phillips curve. In the paragraph dealing with the general 
problem I have only extended the previous ideas. 
 
So, when an applied econometrician wants to estimate an equation he must be very 
clear if he wants to estimate a statistical equation or an economic equation. If he 
wants to estimate an economic equation the theoretical meaning of this equation 
must be perfectly clear. For instance the equation must represent the behaviour of an 
agent or a class of agents, or an equilibrium relationship on a well-defined market. If 
the econometrician does not succeed in giving a rigorous economic meaning to his 
equation he must accept that he is estimating a statistical relation (like a VAR model) 
and he must use the adequate statistical tools (without mixing them with economics). 
 
If the equation has a clear economic meaning, some of its explanatory variables will 
appear as being determined simultaneously with the explained variable, as a result of 
the current economic equilibrium. So, the applied econometrician must close his 
model and write all the equations determining the values of the explanatory variables 
of his equation of interest. However, as the estimation method is under limited 
information, these supplementary equations will not be estimated and have to be 
written only to check the consistency of the estimation problem. What will matter very 
much is the list of explanatory variables which will appear in these complementary 
equations and, which do not appear in the equation of interest. The exclusion of 
these variables from the equation of interest is an economic assumption. We will see 
in the next paragraph that this exclusion is essential for the estimation of the 
parameters of interest and that it can be only partly tested.  
 
We can give another example of the difference between a statistical model and a 
structural econometric model. We saw that the level of education of a worker has a 
strong effect on his wages. We also saw that the ability of the worker (is he clever or 
stupid) is difficult to measure. Because of that this variable does not explicitly appear 
in the equation, and is implicitly included in the error term. We also saw, that the 
ability of the worker might have a positive influence on the level of education. Thus, 
the error term of the wages equation could be correlated with the level of education. 
In this case, the estimated coefficient of education in the equation is a statistical 
relation, but not an economic one. For instance, if we find that one year more of 
schooling increases wages by 7%, we have a statistical regularity, which can be used 
for instance for forecasting, but not a measure of the return of education. We gave 
arguments explaining, that probably the correlation between ability and education 
was low. However, more recent research tried to estimate the economic effect of 
education on wages, by using instrumental variables. These variables must be 
correlated with the level of education, but uncorrelated with the error term of the 
wages equation (that is to the ability of the worker). Finding instrumental variables 
with this property is a difficult problem, but it is essentially an economic problem. 
These instrumental variables must influence the level of education, but must not 
influence wages in a direct way (only through their effect on the level of education). 
Economists took as instrumental variables family background variables, for instance 
parents’ education. However, this choice is an economic hypothesis, which cannot be 
tested, and the meaning of the results of the estimation will be conditional on this 
assumption. All economists will not agree with this assumption. Other instruments 
can be imagined, such as the proximity of a college. Marno Verbeek gives a 
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fascinating discussion of this problem (pages 137-141). The surprising result is that 
the return of education increases when we estimate it with instrumental variables (we 
expected that it would decrease). 
 
Identification and estimation 
 
The database Mukherjee\malta.wk1 includes yearly data on the foreign trade of Malta 
over the period 1963-1989. There are 8 series: Year (the year), X (the exports in US 
dollars), Y (an index of world demand), p (the exports price), pw (the world price), e 
(the exchange rate), cpi (an index of the consumption price), I (investment). The 
model is: 
 
Log(Xd)=b1+b2*log(p)+b3*log(pw)+b4*log(Y) +error term 
Log(Xs)=c1+c2*log(p)+c3*log(e)+c4*log(cpi)+c5*log(I)+error term 
Xd=Xs=X 
 
This model simultaneously determines the volume and the price of exports, Y and p. 
All the other variables are assumed to be weakly exogenous for the parameters of 
these two equations. This assumption is a bit dangerous. However, it could be 
criticised and tested only relatively to a more complete structural model of the 
economy of Malta, with equations explaining the determination of these other 
variables. Now, the two equations of the model have (more or less) a clear economic 
meaning. The first one explains that the demand for exports by foreign countries 
depends on the price of these exports compared to the world price and on the level 
of world demand. The second equation explains that the supply of these exports 
depends on their price (in US dollars), on the exchange rate, on the consumption 
price in Malta (which is an index of the labour cost) and of investment (which is an 
index of the imports demand by Malta that will be satisfied if exports are high 
enough). Personally, I find that the precise meaning of the equations (especially of 
the second equation) presents some ambiguity, but I will not develop my point. 
   
The simplest method to estimate these two equations is by two stages least squares 
(TSLS). The logarithm of the exports price log(p) is projected on the linear variety 
defined by the weakly exogenous variables of the model and the constant term, 
which will be called instrumental variables. This projection )ˆlog( p  will be substituted 
to log(p) in both equations and they will be estimated by OLS. Of course, this method 
will be valid only if the instrumental variables are truly weakly exogenous, and if their 
correlation with log(p) is high enough. Now, even if this is true, this method suffers 
from some difficulties. 
  
Let us start with the simpler model: 
Log(Xd)=b1+b2*log(p)+error term 
Log(Xs)=c1+c2*log(p)+ error term 
Xd=Xs=X 
When you regress (by TSLS) the logarithm of exports on the logarithm of their price, 
you do not know if you estimate the demand function for exports, their supply function 
or a linear combination of both. So, none of these two equations is identifiable.  
 
Let us continue with the model of intermediary complexity: 
Log(Xd)=b1+b2*log(p)+error term 
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Log(Xs)=c1+c2*log(p)+c3*log(e)+c4*log(cpi)+c5*log(I)+error term 
Xd=Xs=X 
All linear combinations of the demand equation with the supply equation includes the 
same variables as the supply equation. So, when you try to estimate this last 
equation by TSLS, you do not know if you are estimating the supply equation or a 
linear combination of the supply and demand equations. Thus, the supply equation is 
non identifiable (but if you run a TSLS regression you will probably get a numerical 
result, only it will have no economic meaning). On the other hand all the linear 
combinations of the supply and the demand equations include explanatory variables 
besides of the price of exports. So, when you regress (by TSLS) the logarithm of 
exports on the logarithm of their price and a constant term, you will get an estimate of 
the demand for exports. This equation is identifiable. 
 
You have noticed that the identification of the demand for exports results of the 
exclusion from this equation of explanatory variables that are present in the supply 
equation. This exclusion is based on economic theory and the economic meaning of 
the demand equation. We will see at the end of this section that the exclusion of 
some variables from an equation can be tested only if the number of excluded 
variable is high enough, higher than the number just necessary to make the equation 
identifiable. 
 
Sims, wrote a devastating paper on this question in 1980, which presented what has 
become called the Sims’ critique. Sims explained that economic theory can exclude 
explanatory variables from a decision equation only for some precise horizon (in 
general the very short run or the very long run). Available data (with a quarterly or 
yearly periodicity) do not conform to these horizons. So, the estimated equation is 
basically mis-specified, and the omitted variables are correlated to observed 
explanatory variables, which should not appear in the equation according to 
economic theory. Sims showed that tests of the exclusion conditions generally reject 
them. A more ordinary reason for this rejection is that the theoretical status of 
econometric equations is often fuzzy and the basis for excluding such and such an 
explanatory variable is often weak. When Sims published his paper, huge 
macroeconometric models with thousand’s equations were popular. Many of these 
equations were purely ad hoc, with a very imprecise and unsatisfying theoretical 
foundation and quite arbitrary exclusion assumptions. So, the article hit a very 
sensitive weakness of the economics of its time. 
 
In the original model of Maltese exports, no linear combination16 of the equations of 
demand and supply includes only the variables present either in the supply or in the 
demand equation. So, both equations are identifiable and can be estimated by TSLS.  
 
There is a necessary condition of identification, which is very easy to check when 
there do no exist constraints between parameters appearing in different equations 
nor between the error terms of different equations. This condition is sufficient in 
cases that are not too queer. Let M be the number of endogenous variables. Here it 
is equal to 4: Xd, Xc, X, p. Let K be the number of exogenous variables (the constant 
term included) of the system of equations. Here it is equal to 6: c, log(pw), log(Y), 
log(E), log(CPI), log(I). Let m be the number of endogenous variables in the 
investigated equation. It is equal to 2 in the demand equation and in the supply 
                                                           
16 With non zero weights for both equations, of course.  
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equation (Xd and p, Xs and p respectively). Let k be the number of exogenous 
variables (the constant term included) present in the investigated equation. It is equal 
to 3 in the demand equation and to 4 in the supply equation. A necessary condition 
for the identification of the investigated equation is: 1−≥− mkK  . For the supply and 
demand equations respectively, we get: 
6-3>2-1 
6-4>2-1 
So, both equations are identified. 
 
We can separate equations that are just identified (those for which the above 
identification condition is just satisfied) from the equations that are overidentified 
(those for which the identification condition is more than just satisfied). In this last 
case the difference between both hands of the inequation is the degree of 
overidentification (2 for the demand equation and 1 for the supply equation). An 
overidentified equation uses more instrumental variables than the minimum required 
number. This excess of instrumental variables allows for a more precise estimation17. 
Overidentification also allows some useful tests. These tests can reject a list of 
instrumental variables, but they do not say which variables have the responsibility of 
the rejection (which can also result from a wrong specification of the equation). These 
test do not teach anything when the equation is just identified. So, they are not 
substitute for more direct evaluation of the property of weak exogeneity of the 
instrumental variables18.  
 
To conclude, there exists   a general necessary and sufficient condition of 
identification of an equation. It is more complicated than the one we have given her, 
but it is implemented in most of econometric software. 
 
The explanatory endogenous variable is substituted by a linear combination of 
instrumental variables, which are not correlated with the error term. This procedure 
will give a precise estimation of the coefficient of the explanatory endogenous 
variables, if we do not lose too much information in this substitution that is if there is a 
strong correlation between the endogenous variable and the combination of the 
instruments. This can be measured with the F statistics of the regression of the 
explanatory endogenous variable relatively to the instruments. We can check if the 
whole set of these instruments is significant, if it is high (a value higher than10 is an 
usual benchmark), and we also can check on the information brought by each 
instrument.  
 
 
How to test the weak exogeneity of a variable: the Haussman’s test 
 
Testing for the weak exogeneity can be done with the Haussman’s test. I will present 
this test on two successive examples.  
 
                                                           
17 However, as the size of the sample of observations is finite, the projection of log(p) on these variables could 
not be computed if they are too many. If this number is high, but not high enough to prevent this estimation, the 
lack of degree of freedom would make the estimation of log(p) very imprecise. The choice of the number of 
instrumental variables is a difficult question: it must be high enough but not too high. 
18 The results of overidentification tests are sensitive to the number of instruments: the power of these tests is 
weak for too few or too many instruments.  
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1. Ouvrir la base Mukherjee\indona.wk1 (Indonésie, annuel, 1968-1992, 6 
variables). La deuxième variable est le PIB y, la troisième variable est la 
consommation C (comme C est un mot réservé pour la constante, on lit en fait 
ser03). On peut régresser le log de la consommation sur un constante et le log du 
PIB. La régression n'a pas une mauvaise allure : le coefficient de log(y) est 
1.006288 avec un écart type de 0.024299. Maintenant, les économistes 
keynésiens disent que le niveau de la consommation et du PIB sont 
simultanément déterminés par le modèle d'équilibre (déséquilibre ?) auquel ils 
croient. Cela veut dire que dans la régression précédente le PIB n'est pas 
exogène, c’est-à-dire qu’il est corrélé avec le terme d'erreur. Dans ce cas on sait 
que les MCO donnent des estimateurs (ici de l'élasticité de la consommation au 
PIB) qui ne sont pas convergents. On peut remédier à ce problème en 
recherchant des variables instrumentales. Ces variables doivent être corrélées 
avec la variable explicative (le log du PIB) mais pas avec le terme d'erreur de 
l'équation de consommation. La tradition keynésienne conseille de prendre 
l'investissement I (qu'elle considère comme exogène). On peut aussi prendre 
l'excédent commercial (X-M). L'idée est que les exportations de matières 
premières sont largement indépendantes de la conjoncture indonésienne et 
déterminent largement les importations qui sont contraintes par les devises 
disponibles. Dans ce cas on trouve comme coefficient du log du PIB 1.008644, 
avec un écart type de 0.024885. Le résultat des MCO et celui des IV sont très 
voisins pour notre paramètre d'intérêt. L'idée du test d'Haussman est de 
comparer ces deux résultats. 

 
2. Si le log du PIB est exogène, alors les MCO sont BLUE, et les IV sont 

convergents, mais moins précis. On remarque ci-dessus que l'estimateur IV a un 
écart type plus élevé que l'estimateur MCO. Si le log du PIB n'est pas exogène, 
alors les MCO ne sont pas convergents, mais l'estimateur IV l'est. Ainsi, si 
l'estimateur IV et l'estimateur des MCO sont très différents, le premier est correct, 
le second ne l'est pas et on rejette l'exogénéité du log du PIB. Si les deux 
estimateurs sont voisins, alors les deux sont corrects, mais celui des MCO est 
plus précis et on retient l'exogénéité du log du PIB. Pour faire le test on appelle u 
la différence entre les deux estimateurs de l'élasticité de la consommation au PIB. 
Ici on a : u=0,002356. Le rapport de u au carré à sa variance, noté m, suit un chi2 
à 1 degré de liberté. Haussman démontre que la variance de u est égale à la 
différence des variances des estimateurs de l'élasticité par les IV et par les MCO. 
Finalement on obtient : m=0.19258795. Cette statistique est négligeable à côté du 
seuil à 5% du test du chi2, qui est 3.84. Aussi, on retient l'estimateur des MCO et 
on ne rejette pas l'exogénéité du log du PIB. 

 
3. Le test d'Haussman s'étend naturellement au cas multivarié, quand on veut tester 

l'exogénéité d'une ou plusieurs variables explicatives, mais que le total de 
variables explicatives est strictement supérieur à 1, à une méchanceté pratique 
près. Dans ce cas, au lieu de diviser par la variance de l'écart des deux 
estimateurs, on multiplie par l'inverse de la matrice de variance-covariance des 
deux vecteurs d'estimateurs. Hélas, cette matrice est souvent singulière, et pour 
s'en sortir il faut recourir à des inverses généralisés, ce qui est embêtant quand 
on n'est pas très savant. Si on est astucieux, on peut cependant s'en sortir. 
Comme nous allons le voir. 

 



Jean-Pierre Laffargue Page 65 15/05/2014 

4. Revenons au problème des exportations maltaises présenté dans la section 
précédente et supposons que l'on souhaite estimer la fonction de demande 
d'exportations. A priori la variable explicative prix des exportations est endogène, 
et on ne peut pas utiliser les MCO. Vérifions cela par un test d'Haussman. On 
commence par estimer cette équation par les MCO. Le coefficient de log(p) est –
2,88 avec un t de Student de –4,44. On estime la même équation par les IV. Les 
instruments sont : c, log(pw), log(Y), log(E), log(CPI), log(I). Le coefficient de 
log(p) devient –5.07 avec un t de Student de –4,81. La grosse variation de 
l'estimation de ce coefficient suggère que p n'est pas exogène. 

 
5. La mise en œuvre pratique du test d'Haussman (il n'est pas évident de démontrer 

que cette mise en œuvre pratique est correcte) consiste à régresser d'abord 
log(p) sur toutes les exogènes : c, log(pw), log(Y) log(p), log(E), log(CPI), log(I) 
On déduit alors le fit de log(p). Puis on réestime l'équation de demande 
d'exportations par les MCO en rajoutant la variable fit de log(p) dans la liste des 
explicatives. Le coefficient de log(p) devient négligeable, mais celui de fit est –
5,05 avec un t de Student de –6,37. Le test d'Haussman consiste à tester la 
significativité de cette nouvelle variable par un test de Student. Elle est 
visiblement significative, et on rejette donc l'exogénéité du log du prix des 
exportations dans la fonction de demande d'exportations19. 

                                                           
19 To implement the Haussman’s test on the Phillips curve, which was presented at the beginning of this chapter, 
we will add to the right side of equation (1) the fit of the inflation rate given by equation (2) and we will check if 
the coefficient of this new variable significantly differs from zero. The tutorial of Eviews gives a small program 
for this very practical implementation of the Haussman’s test.   
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CONCLUSION  
 
L'économétrie a deux aspects, complémentaires mais différents. 
 
 La théorie économétrique établit les propriétés mathématiques de méthodes 
d'estimation et de tests. Par exemple on établit que sous certaines hypothèses 
l'estimateur des MCO est BLUE. 
 
 L'économétrie appliquée utilise les résultats de l'économétrie théoriques pour 
établir à partir d'un ensemble de données un modèle susceptible de rendre compte 
de certaines caractéristiques importantes de ces données. La stratégie de 
construction d'un modèle économétrique a fait l'objet de débats intenses au cours de 
ces 50 dernières années. S'ils ont abouti à certains accords, les désaccords restent 
nombreux, et on peut identifier jusqu'à des clivages idéologiques sur ce sujet. 
 
En tous les cas la modélisation économétrique sans stratégie rigoureuse, en 
appliquant rapidement des résultats théoriques récents et sophistiqués, aboutit à des 
résultats peu convaincants. Je pense que cette faiblesse est plus répandue en 
macroéconomie qu'en microéconomie. Peut-être parce que le développement 
théorique de l'économétrie des variables avec tendances stochastiques a progressé 
plus vite que la réflexion sur la façon dont il convenait d'utiliser ses résultats. Peut-
être parce que la spécialisation entre économètres théoriciens et économètres 
appliqués est moins poussée en microéconomie qu'en macroéconomie20. 
 
Une idée majeure de ce cours est qu'en économétrie appliquée il convient de passer 
du temps à analyser les données. La facilité avec laquelle les logiciels récents 
effectuent des opérations de statistique descriptive et tracent des graphiques, rend 
cette exigence facile à mettre en œuvre. 
 
Spécification, estimation et tests : l'approche de la Cowle Commission 
 
On peut commencer par quelques définitions. Le data generating process  (DGP) 
représente le vrai processus de générations des données. Un modèle est une classe 
de processus de générations de données, dépendant d'un certain nombre de 
paramètres. Il est possible que le DGP appartienne au modèle. Mais le contraire est 
également possible. L'économètre dispose d'un échantillon d'observations, et va 
l'utiliser pour estimer le modèle, mais aussi pour tester si le DGP appartient au 
modèle. Le test se fait contre un modèle plus général auquel on espère que le DGP 
appartient. Ce souhait n'est pas toujours réalisé. 
 
L'approche orthodoxe de la Cowles Commission est très exigeante. Elle note que la 
théorie économétrique d'estimation et de tests suppose toujours que le modèle est 
donné initialement. Pour ce modèle elle propose alors d'utiliser l'échantillon 
d'observations pour estimer les paramètres et tester soit des propriétés de ceux-ci, 
soit si les hypothèses faites pour le modèle sont vérifiées. Dans le cas contraire on 

                                                           
20 Ou peut-être qu’étant macroéconomiste je tends à surestimer la qualité des travaux d’un domaine que je 
connais moins bien. 
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rejette le modèle. Un nouvel essai avec un nouveau modèle pourra se fonder sur 
l'expérience acquise lors de l'échec précédent. Mais pour pouvoir utiliser validement 
la théorie économétrique il faudra effectuer la nouvelle estimation et les nouveaux 
tests sur un échantillon différent. 
 
Evidemment cette exigence n'est pas réaliste. Aussi les praticiens partaient de leur 
modèle théorique préféré. Si des tests le rejetaient, ils en analysaient la raison. Puis 
ils faisaient des séries de corrections ad hoc, jusqu'à ce que plus aucun test ne 
rejette leur modèle amendé. Cette procédure est appelée du spécifique au général. 
Elle permet de ne rejeter jamais aucune théorie, à condition de passer suffisamment 
de temps sur les corrections ad hoc et à cause du caractère fini de l'information 
contenue dans les données. Bien sûr les tests, par exemple de Student, faits sur le 
modèle final, sont malhonnêtement utilisés, puisque ce modèle n'est pas 
indépendant des données.  
 
Exemple : fonction de consommation française dont la réestimation tous les deux ans 
donne des résultats complètement différents (data mining et critique de Lucas). 
Exemple : expliquer le PIB français de 1980 à 2000 par la situation en Thaïlande de 
1960 à 1980 (exemple de data mining). 
Le data mining est le défaut ultime que combattait justement la Cowles Commission. 
 
Une première philosophie alternative : du général au spécifique (David Hendry) 
 
Le modélisateur commence avec un modèle très général. Ce modèle englobe, 
comme cas particuliers, plusieurs théories concurrentes. Son caractère éclectique ne 
le rend pas théoriquement satisfaisant. La première chose à vérifier est qu'il est 
suffisamment général pour que ses hypothèses ne soient pas rejetées par les 
données (qu'il est congruent aux données). Par exemple il faut le plus souvent que 
ses résidus soient homoscédastiques, indépendants entre eux et gaussiens. 
 
Une fois cela vérifié, l'économètre procède par une succession de simplifications. 
Chaque simplifications consiste le plus souvent à tester la nullité de certains 
paramètres. Pour chaque modèle simplifié on vérifie que les hypothèses requises 
(par exemple l'homoscédasticité des résidus) sont vérifiées. A la fin, toute 
simplification supplémentaire est rejetée par les données, et l'économètre retient le 
modèle simplifié au delà duquel il ne peut plus continuer.  
 
Cette démarche est devenue une norme de nos jours, alors que la démarche du 
spécifique au général est très mal vue. Elle n'est pas cependant sans défaut. 
D'abord, deux économètres différents peuvent effectuer leurs simplifications 
successives dans des directions différentes et aboutir à deux modèle simplifiés 
différents. Les seuils de significativité des tests devraient se cumuler. Ainsi le modèle 
final n'est pas rejeté contre le modèle initial à un seuil bien supérieur aux 5% 
habituels ce qui rend cette méthode fragile. Ensuite, pour certaines questions, la 
théorie économique est assez précise pour permettre une définition du modèle 
général initial qui fasse l'unanimité. Dans d'autres cas cette théorie est trop vague et 
on ne sait pas trop comment choisir ce modèle général. 
 
Une deuxième philosophie alternative : l'analyse exploratoire des données 
(EDA) 
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L'idée est d'examiner les données sous différents angles, et de cet examen, 
complété par une réflexion théorique, de déduire progressivement un bon modèle. 
D'abord un modèle très simple est ajusté sur les données. Puis les résidus de ce 
modèle sont examinés. Les caractéristiques de ces résidus qui contredisent les 
hypothèses de base des MCO (par exemple une autocorrélation ou la présence 
d'outliers) suggère alors des améliorations du modèle. On regarde notament les 
histogrammes, les scatter diagrams et les outliers. Evidemment, si l'échantillon 
d'observation est de petite taille, l'information qu'il contient risque d'avoir été 
entièrement utilisée pour spécifier un modèle qui en rende compte, comme dans le 
data mining. Les tests n'ont plus alors aucun sens. L'idéal serait de partager les 
données en deux, une partie pour l'EDA, une partie pour les tests et l'estimation. En 
général on ne fait pas cela et on se borne à ne pas pousser l'EDA trop loin.  
 
Une troisième philosophie : l'analyse de fragilité ou de sensibilité (Leamer) 
 
Supposons que nous nous intéressions à la théorie du rattrapage : selon cette 
théorie le taux de croissance d'un pays sur la période 1965-1995 est d'autant plus 
fort que son PIB par tête en 1965 était bas. Il est facile de construire un échantillon 
portant sur 100 pays, et de régresser sur 100 points le taux de croissance par rapport 
à une constante et au PIB initial, puis de tester par un t de Student si le coefficient du 
PIB initial est significativement négatif. 
 
Maintenant les différences de performance de croissance entre pays sur ces 30 
années ne dépendent pas que du PIB initial. Elles dépendent aussi du niveau 
d'éducation initial, de l'investissement en éducation, de l'expansion démographique, 
de la politique économique, etc. En rajoutant certaines de ces variables (on ne peut 
bien sûr pas toutes les mettre) on change l'estimation du coefficient du PIB initial. Ici 
c'est ce coefficient qui nous intéresse (on l'appelle un paramètre d'intérêt) alors que 
les valeurs des autres coefficients ne nous intéresse pas (on les appelle les 
paramètres de nuisance).  
 
L'analyse de fragilité examine si le coefficient du PIB initial reste significativement 
négatif quand on change les autres variables du modèle. Elle essaie de voir aussi le 
champ de variation de l'estimation du paramètre d'intérêt. 
 
Ces trois philosophies ne sont pas exclusives, et dans un problème concret, 
certaines s'avèrent plus adéquates que d'autres. 
 
Conclusion 
 
Aux recommandations précédentes on peut en ajouter d'autres plus basiques, mais 
importantes. D'abord l'équation estimée ne doit pas paraître étrange à un 
économiste, c’est-à-dire ne doit pas inclure des incohérences logiques.  
 
La première distinction est entre variables de stock, définies à un instant précis (par 
exemple le capital, la richesse, les prix, le taux d'intérêt, le taux de change), et 
variables de flux définies sur une période (la consommation, le revenu, 
l'investissement). Le flux d'une période peut dépendre d'un stock de début de 
période, pas de fin de période. Souvent un stock est le cumul de flux passés (par 



Jean-Pierre Laffargue Page 69 15/05/2014 

exemple le capital est le cumul de l'investissement). Mais le flux le plus récemment 
observé est un mauvais indicateur du stock (cette évidence a été oubliée dans des 
articles célèbres).  
 
Egalement si la théorie économique établit que la bonne variable est le taux d'intérêt, 
on ne peut pas remplacer cette variable par sa différence première, sauf à introduire 
une dynamique bizarre. Il ne faut pas mettre non plus des délais d'ajustement 
étranges, du type ma consommation dépend de mon seul revenu d'il y a trois ans : 
ce résultat économétrique risque de provenir de data mining dans un échantillon de 
petite taille (penser à mon exemple France-Thaïlande). 


