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popular. However, the covariance and autocovariance matrices of the shocks hitting the countries at 

a same time have a large size and are estimated on a rather short time period. To improve the 

precision of their estimation, we assume that the structure of the shocks can be represented by a 

limited number of common factors and we apply recent developments of factor analysis.  
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Introduction 

Estimating a macroeconomic equation over a panel of countries has become popular. According to 

this approach the values of the parameters of this equation, but not its specification, may differ or 

not between countries. Using panel estimation helps to get more robust and precise empirical 

findings: as these countries share some common structural features, each country estimation benefits 

from information brought by its partners. Moreover, panel estimation allows to identify deep 

structural differences between countries.  

As the errors terms of the various countries are probably correlated, and as the structure of these 

correlations are probably more complex than the one allowed by error components models, SUR 

methods appear the most natural way to make this estimation. However, the presence of endogenous 

and anticipated explanatory variables requires the use of instrumental variables and GMM methods, 

instead of generalized least squares. In both cases, the covariance matrix of the shocks hitting the 

countries at a same time has a large dimension and is estimated on a rather short time period. This 

problem is made more complex if we allow for some autocorrelation between shocks. To improve 

the precision of the estimation of the covariance and the autocovariances of the shocks and to solve 

the problems which might result from their singularity, we assume that the structure of the shocks 

can be represented by a limited number of common factors and we use recent developments of 

factor analysis.  

  

The problem 

We want to estimate on a panel of I  countries, indexed by i , and on a period of T years, indexed 

by t , the following system of I  equations: 

(1) 1,..,2;,..,1;);,,,( 321,11,   TtIixxxygy itiitit

a

titiit  . 
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I and T are of the same order of magnitude, and not very high. The ity  are the explained variables, 

the jitx  are the explanatory variables, g  is a function representing the behavior associated to 

country i , the i  are the parameters of this function (they may differ or not between countries). it  

is the error term of null expected value
3
. 

We assume that the error terms of a common year are correlated, and call  , of typical element ij , 

their covariance matrix. This assumption is consistent with an interpretation of error terms as 

correlated random shocks affecting the different domestic economies. We will put some structure on 

these correlations to increase the number of degrees of freedom of our estimation. However, the 

structure usually proposed by error component models is too restrictive for our needs. We will 

assume either that the error terms are non autocorrelated or that they are autocorrelated.  

If all the explanatory variables were predetermined, that is if the it  were independent of the 

contemporaneous and past values of the explanatory variables, system (1) could be easily estimated 

by generalized nonlinear least squares. However, we prefer making more general assumptions. 

Thus, we assume that variable itx2  is predetermined, but that this property is not shared by variable 

itx3 . Moreover, variable a

tix 1,1   represents the forecast at time t  of variable ix1  for time 1t . As this 

variable is not observed, we follow a suggestion by Wickens (1981), and substitute it by its 

observed value at time 1t : 1,1 tix . Thus, we introduce a supplementary error in the equation, 

which bears on the foreseen value of an explanatory variable for a future time
4
. We have then to 

estimate a model with errors on variables. The endogeneity of some variables and the error in some 

others make least squares estimators non consistent.  

To overcome these difficulties we allocate to each national equation a vector line of n  instrumental 

variables itW  and we assume that the processes they follow are uncorrelated with the processes of 

the it .. Then, we will use a two steps GMM method.  

Estimation of the system of equations (1) by GMM 

Let iW  be the matrix of observations for the instruments related to country i , of size ( nT ,2 ). itW  

is its typical line. Then, we define by ).....( 11 ItItttt WWV   the line vector of size In , and by V the 

matrix with typical line tV  and dimension ( InT ,2 ). The moment's condition is: 

(2) 0tEV  

We approximate the theoretical moments by the empirical moments and we get: 

(3) 0' V  

where   is a column vector of 1 with dimension 2T . Condition (3) cannot be exactly checked in 

most cases where the total number of instruments is larger than the number of parameters to 

                                                      
3
 Our problem is different from the one of Pesaran and Smith (1995). We directly estimate the various values that a 

given parameter can take in the various countries without supplementary assumptions. For Pesaran and Smith, the 

differences between these values are random, and they estimate the expected value and the variance of each coefficient 

over the set of all countries. They could also compute in their analytic frame the optimal forecast of the values that the 

coefficients take in the various countries. Thus, if we use the terminology of the econometrics of panels, our approach is 

similar to that of the models with fixed-effects, and the approach of Pesaran and Smith is similar to the one of 

component errors models. This last approach gives more precise estimations, if the stronger assumptions it requires are 

valid. 
4
 And then which follows a difference of martingale, independent of the explanatory and explained variables at and 

before current time. 
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estimate. Thus, we try to minimize the distance between 'V  and 0 , by using a distance matrix A , 

of dimension: ( InIn, ), which is symmetric and positive definite. Thus, we minimize relatively to 

parameters the expression: 

(4) iVAV ''  

The efficient choice of matrix A  is: 1A , where  . is the spectral density at frequency 0 of 
2/1)2/(' TV  . We can separate two cases. When the process of the error term is non autocorrelated, 

the estimation of   has for typical element: )2/(' TWW jiij . Then, to compute A , we must 

invert this matrix, of dimension ( InIn, )
5
. 

When the process of the error term is autocorrelated we note ZhEh htt   ,)( ' , its 

autocovariance function, with typical element )(hij . Let us choose a kernel (  ) and a bandwith 

parameter  . . Then, the estimation of  : has for typical element: 

)2/(])()/()0([
3

1

,

'
1

2

2

'  










 TWWhhWW
T

h

htjit

hT

t

ijTjiij  . 

Den Haan and Levin (1996) is a good guide for the choice of the kernel and the bandwith.  

In practice we proceed through two steps. In the first step, we assume the errors terms to be non 

autocorrelated and with a covariance matrix   proportional to the identity matrix. Thus, A  is the 

block diagonal matrix, with typical block: 1' )( 

ii WW . We minimize criteria (4), and thus we get a 

first value for the parameters and the residuals. Then, we can compute estimators of the covariance 

and the autocovariance matrices of the error terms and, in the second step, apply the previous 

formulae. This second step may be iterated several times. 

The covariance matrix of the estimated parameters time 2/1)2( T , is asymptotically equal to 
11 )'(   , where   is the matrix of the partial derivatives of )2/(' TV   relatively to the 

parameters. 

A difficulty is that the estimation of the covariance and autocovariance matrices of the error terms is 

very imprecise: it̂  is observed for 1,..,2  Tt , which makes 2T  observations. Yet I  is of the 

order of 2T . Thus these matrices are almost singular, or even singular if the number of observed 

years is smaller than the number of countries. We use factor analysis to put some structure in this 

matrix; that is some interdependence between the shocks hitting the countries in a way that should 

appear natural to economists.  

                                                      
5
 We have assumed that the covariance matrix  , is independent of time (time homoscedasticity), In the computation 

of   we could expect to get estimators of the parameters and of their covariance matrix robust to time-

heteroscedasticity by substituting in the expression of  , )2T(jW
'
iWij /ˆ   by )2(ˆˆ /'

1

2






TWW jtjtitit

T

t

 . The 

problem is that this new estimator is the sum of 2T   matrices of dimensions ( In,In ), but of rank 1. Indeed the term of 

time t is the product of the column vector 
'
tV  by its transpose. Consequently, the rank of the estimator of   is at most 

equal to 2T . In most applications it will be less than In , and matrix   will be singular so non-invertible. Thus, it 

seems impossible to build estimators robust to heteroscedasticity for our problem. For the same reason we will assume 

the autocovariance matrices of the error terms to be independent of time. 
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Estimation of the covariance matrix of the error terms when they are non autocorrelated
6
 

t  denotes the vector of error terms for the set of all nations (of dimension I ) and for 1,..,2  Tt . 

We denote in the same way the random vector, its realization and its estimation. We make the 

following assumptions: 

(5) ttt uF  , 

tF  represents a column vector of dimension f ; its elements are called common factors. tu  is a 

column vector of dimension I ; its elements are called specific components. Both are random.   is 

a matrix of dimension ( fI , ) and is certain. Its elements are called loadings. 

0 tt EuEF , ),..,()( 1

'

Itt dddiagDuuE 
7
, 0)( ' uFE t , ,t .  

  tuuEFFE tt ,,0)()( '' , ftt UFFE )( ' 8
.  

Then, we deduce: 

(6) D '  

Instead of having to estimate the 2/)1( II  parameters of  , we just have to estimate the If )1(   

parameters of and D  (actually the improvement is meaningful only when the number of factors is 

much smaller than half the number of countries). It can be shown that the maximum likelihood 

estimators of and D , denoted by ̂ and D̂ , under the assumption of normality of t , are given by 

conditions: 







1

2

)2/()')((ˆ
T

t

tt Tmm  , where m  is the arithmetic mean vector of the t  over the 

estimation period. 

I  1,..,1 1 , are the real positive eigenvalues of 1ˆˆ D , which are assumed to be different and 

ranked by decreasing values (actually, the f  first i  must be positive for the computation to be 

possible), 

  is the diagonal matrix of dimension ( ff , ) with diagonal elements: 1 , . f . 

the f  columns of ̂  are the f  first eigen vectors of 1ˆˆ D  (related to the f  largest eigenvalues) 

which are normed to check for the identification condition:   ˆˆˆ 1D . 

The estimation procedure is iterative. First, we give an initial value to D̂  : 0D . Then we compute 

the eigenvalues and the eigen vectors of 1

0
ˆ D ,and consequently 0 . Then, we compute 1D  which 

is the diagonal matrix, the diagonal elements of which are the same as for '

00
ˆ  , and we start 

again. This procedure appears to converge easily in applications, although to our knowledge there 

                                                      
6
 Doz (1998, page 85-161) gives a clear and rigorous introduction to factor analysis in the case of non autocorrelation, 

and we base on it here. Doz borrows much from Lawley and Maxwell (1971) and from Bartholomew (1987). 
7
 diag means a diagonal matrix with the following diagonal elements. 

8
 fU represents an identity matrix, which in this case is of dimension ( ff , ). 
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do not exist mathematical results proving this property. More sophisticated estimation methods exist 

and are given by Doz
9
. 

The choice of the initial value 0D  is a supplementary problem. We denote by 2

iR  the square of the 

multiple correlation coefficient between the ith component of t  and the 1I  other components, 

and by ij̂  the typical element of matrix ̂ . Then, we choose: )1(ˆ 2

0 iiii Rd  . 

Another difficulty is the choice of the number of factors f . A simple method is to compute a 

matrix of the same dimension as ̂ , the non diagonal terms of which represent the correlations 

between the components of vector t , and the diagonal terms of which are the 2

iR . Then we make a 

principal component analysis of this matrix, and we keep as many factors as there exists non-

negligible positive eigenvalues. 

This a priori test is sufficient at the beginning of a succession of iterations of GMM, when the fact 

that matrix   may be a little wrong bears no serious consequences. However, an a posteriori test of 

the validity of the choice of the number of factors, more rigorous, must be made at the last step of 

GMM. This test, of the likelihood ratio kind, uses as null hypothesis that the number of factors is 

equal to f . The alternative hypothesis is that there does not exist any constraint on the covariance 

matrix  . The statistics of the test is: 

(7) 



I

pj

jT
1

)1ln()2(  . 

This statistics asymptotically verifies a 2  with a number of degrees of freedom equal to 

2/)]()[( 2 pIpI  . Bartlett suggests substituting, in the expression of  , the number of 

observations: 2T , by: 3/2)52(2 pIT  , when the number of observations is low, which is 

the situation we face here. 

Estimation of the covariance and autocovariance matrices of the error terms when they are 

autocorrelated 

We assume now that each common factor and each specific component follows a weakly stationary process, 

and may present autocorrelation. We do not make any normality assumption. All the other assumptions of 

the previous section are kept unchanged. In particular, the factors and the specific components are non 

correlated to one another. Under these assumptions, the estimator of the last section is a M-estimator. Doz 

and Lenglart (1999) show that it is consistent. This estimator is non efficient, and does not give any 

information on the stochastic process followed by the factors and the specific components. However, the 

computation of this estimator allows the computation of a pseudo-score test of the number of common 

factors, developed by Doz and Lenglart
10

. Let us make, as in previous section, the null hypothesis that 

the covariance of the error terms can be represented by a model with f  factors. The alternative 

hypothesis is that there does not exist any constraint on the covariance of process t . We first have 

to introduce some new notations. We will represent by index 0 the true value of a parameter and by 

a ^ its M-estimated value. We call: 

                                                      
9
 The empirical covariance ̂  and its estimated approximation D̂'ˆˆ   have the same diagonal. This results from the 

fact that the factor representation does not change variances, but simplifies the structure of the covariances by assuming 

that it results from a small number of common factors. 
10

 Doz (1998) shows that when t is non autocorrelated, the likelihood ratio test of the previous section is asymptotically 

equivalent to the pseudo-score test that we are going to present. 
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






 


d

vec
 , with: ),..( 1 Iddd  . 

)(h is the application which associates to   the vector: )'( Dvech  .  

IE is the duplication matrix of order I  with dimension )2/)1(,( 2 III , which verifies for all 

symmetric matrix M  of dimension I : vechMEvecM I . 

'1' )( IIII EEEE    is the pseudo-inverse of E . More generally, exponent – means pseudo-inverse 

and exponent + means generalized inverse. 

We will assume now that t  follows a Gaussian stationary process, and we note: Zh , 

)()( '

httEh   , 



Zh

hhB )()(0 . 

2/)0()0( 11'

0 II DDJ   . 

000000 )(
'

)()(
'

)(
'

J
hh

J
hh
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
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 
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






















, PUM II   2/)1( . 

Then, the statistics of the pseudo-score test is: 

)'()'ˆˆ()'ˆ'(]2/)2[( '

0   DvechMEBEMDvechT II . 

This statistics asymptotically verifies a 2  with a number of degrees of freedom equal to 

2/)]()[( 2 pIpI  . 

Practically, 0B  is computed as a sum including the )(h which are different enough from 0. We can 

also check that increasing the range of the sum has no significant effect on the numerical value of 

the test. 

When we have determined the number of factors, we can estimate the model of the error terms by 

computing the likelihood function with a Kalman filter as Stock and Watson (1993) suggested.. Let 

us assume to simplify the presentation that each common factor follows an ARMA(1,1) and that 

each specific component follows an AR(1). The model can be written: 

(8) ttt uF   

11   tttt FF   

ttt uu   1  

  and  are diagonal matrices of respective dimensions f  and I . t  and t are random vectors of 

dimensions f  and I . Their components are non correlated to one another and non autocorrelated. 

Moreover, we will assume that they are Gaussian. The model can be rewritten as an inobservable component 

model in a state-measure form: 

(9)  


















t

t

t

It

u

F

U  0  
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, 

or, with an evident change in notations: 

(10) tt Z   

ttt C   1  

t  is the measure vector which is observable. t  is the state vector. t  is the perturbation vector, which is 

non autocorrelated, and the components of which are nor correlated to one another. We want to estimate 

elements of matrices Z and C  and the variances of the perturbations. This can be easily done by maximum 

likelihood, using optimal forecasts .of the state vector and the covariance matrices of the forecast error, 

which are given by the use of Kalman filter (see Harvey (1989)).  

A practical problem is that we must choose the number of lags of the ARMA processes which fit the best the 

dynamics of the common factors and of the specific components. The only solution we see is an error an 

trial method, which checks for the significativity of the estimated parameters and the quality of the 

innovations t .  

When the estimation has been made, it is easy to derive the autocovariance matrices of t  , )(h , under the 

assumption that model (8) is valid. 

 

Conclusion 

We have applied the previous methodology to the estimation of a wage curve over a sample of 16 

industrialized countries, using yearly data from 1982 to 1997 (Guichard and Laffargue (2000))
11

. 

We limited ourselves to the case where the error terms are non autocorrelated, a test which has not 

been presented here not rejecting this hypothesis. The specification of the wage equation is the same 

for all countries, but the values of the parameters may differ. We have retained six instruments per 

country. We have used a strategy of nested tests to evaluate which parameters are identical between 

countries and which parameters differ. 

We show that wages contracts are fairly long (which implies some nominal rigidity) and that price 

expectations are quite static. The wedge has a positive but small effect on wages: an increase in 

social contribution mainly results in smaller earnings for the workers. The employment rate is a 

better indicator of labor market tensions than the unemployment rate. The elasticity of the wage cost 

to the employment rate clearly differs across countries. However our results are not inconsistent 

with Blanchflower and Oswald (1994) findings of an elasticity of the wages to the unemployment 

rate of around 0.1. Lastly, in some countries, the wage behavior is clearly at odds with our 

specification, because of very specific labor market institutions (Spain) or because the country has 

experienced a strong economic shock (Finland). The best model was a model where both the 

productivity and employment rate parameters are country specific, but where all the other 

parameters took a common value across countries.  
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